EXAMINATION CODE: 4

Dist. Code	Registration No.					

QUESTION BOOKLET SL. NO.
489368

QUESTION BOOKLET - PAPER-II

(Read carefully the instructions given in the Question Booklet)

SUBJECTS: CHEMISTRY AND BIOLOGY (BIOLOGICAL SCIENCE)

MAXIMUM MARKS: 100

MAXIMUM TIME: 2 HOURS

SUBJECT CODE:

BS

(3.00 p.m. to 5.00 p.m.)

(Including initial 10 minutes for filling O.M.R. Answer Sheet)

INSTRUCTIONS TO THE CANDIDATES

- 1. The sealed Question Booklet containing 100 questions enclosed with O.M.R. Answer Sheet is given to you.
- 2 Verify whether the given Question Booklet is of the same subject which you have opted. (as in Sl. No. 7 of Admission Ticket)
- 3. Open the question paper seal carefully and take out the enclosed O.M.R. Answer Sheet outside the Question Booklet and fill up the general information from Sl. No. 1 to 8 of O.M.R. Answer Sheet. If you fail to fill up the details in the form of alphabet and signs as instructed, you will be personally responsible for consequences arising during scoring of your Answer Sheet.
- 4. Enter the Question Paper Booklet Sl. No. in the O.M.R. Sheet at Sl. No. 4.
- Enter the code of the subject you opted in the Sl. No. 8 of O.M.R. Sheet.
- During the examination :-
 - (a) Read each question carefully.
 - (b) Select the correct answer out of the four choices given under each question.
 - (c) Completely darken/shade the relevant oval against Question No. in the O.M.R. Answer Sheet. For example, in a question paper if Sl. No. 3 is correct answer for Question No. 20, then darken before Sl. No. 20 of O.M.R. Answer Sheet using Blue/Black Ball Point Pen as follows:
 - 20. (1)
-)
- (Only example)
- Rough work should be done only on the blank space provided in the Question Booklet. Rough work should not be done on the O.M.R. Answer Sheet.
- 8. If more than one oval is darkened for a given question, such answer is treated as wrong and no mark will be given.

 See the example in O.M.R. Answer Sheet.
- The Candidate and the Room Supervisor should sign in the O.M.R. Sheet at specified place. Candidate has to put left hand thumb impression at specified place compulsorily.
- 10. Each of the candidate is given carbonless O.M.R. Sheet in duplicate. Candidate should return the <u>original O.M.R.</u> Answer Sheet to the Room Supervisor and retain carbon copy of the same with him after the examination.
- 11. Calculator, pager and mobile phones are not allowed inside the examination hall.
- 12. If a candidate is found committing malpractice, such a candidate shall not be considered for recruitment and action will be taken against such candidate as per rules.

INSTRUCTIONS TO FILL UP THE O.M.R. SHEET

- 1. There is only one correct answer for each question.
- 2. All entries in the oval must be made with BLUE or BLACK ball point pen only. Do not try to alter the entry.
- 3. Oval should be darkened completely so that the numeral inside the oval is not visible.
- 4. Do not make any stray marks on this sheet.
- 5. This is a carbonless Answer Sheet. There is no need to shade the second copy separately.

ENGLISH VERSION

- Among the following identify the species with an atom in +6 oxidation state: 1.
 - (J) CrO₂Cl₂

(2) NiF_6^{2-}

(3) $Fe(CN)_6^{2-}$

- (4) MnO_4
- The hybridisation of atomic orbitals of nitrogen in NO₂, NO₃ and NH₄ are respectively, 2.
 - (1) sp^2 , sp^3 and sp

(2) sp, sp^3 and sp^2

(3) sp, sp^2 and sp^3

- (4) sp^2 , sp and sp^3
- 3. Which of the following transition involves the highest energy? (All processes are in the gaseous state)
 - $(1) \quad M^{2+} \to M^{3+}$

 $(3) \quad \mathbf{M} \to \mathbf{M}^{+}$

- Which of the following are isoelectronic and isostructural? 4.
 - (1) NO_3 , CO_3^{2-}

(3) SO_3, CO_3^{2-}

- (2) SO_3, NO_3^- (4) CO_3^{2-}, ClO_3^-
- 5. An aqueous solution of 6.3 g of oxalic acid dihydrate is made up to 250 mL. The volume of 0.1 N NaOH required to completely neutralise 10 mL of this solution is
 - 4 mL (1)

(2) -- 40 mL

20 mL (3)

10 mL

Space For Rough Work

6.	Zir	rconium and hafnium hav	e similar ionic ra	dius because	
	(1)		17	₩	
	(2)	of diagonal relationsh	ip.		
	(3)	of lanthanide contract	ion.		
	(4)	both belong to the san	ne group.		
7.	If 1 mo	L of oxygen at 25 °C an lecules present in 2L of S	d 760 mm press	ure contains 'x' mole	cules, then the number of
	(1)	40	(2)	4x	
	(3)	2x	(4)	x/2	
8.	Two	o electrons in the same or	bital can be disti	nguished by their	· •
	(1)	spin quantum number			
	(2)	principal quantum nun	ıber		
	(3)	orbital quantum numbe	er		
	(4)	magnetic quantum nun	iber		
9.	Whi KM	ich one of the following g	gives CO ₂ with c	onc. H ₂ SO ₄ and also	decolorizes hot, acidified
	(1Y	Na ₂ C ₂ O ₄	(2)	NaHCO ₃	
	(3)	Na ₂ CO ₃	(4)	CH ₃ COONa	
10.	In th	e chemical reaction,			
		$K_2Cr_2O_7 + X H_2SO_4 +$	$Y SO_2 \longrightarrow K_2S$	$O_4 + Cr_2(SO_4)_2 + Z$	H ₂ O.
	X, Y	and Z are		4 2 4/3	2-,
	(1)	2, 1, 2	(2)	1, 3, 1	
	(3)	4, 1, 4	(4)	3, 2, 3	
			Space For Roug	gh Work	
		القرير القرير		,,, o —	Con

H₁SO₄+ kmno₄+ Na₂C₃O₅ -> 250₄ + h₁SO₄

K₁C₇2O₂ + H₂SO₄ + SO₂ -> K₂SO₄ + C₃SO₄

K₂C₇2O₂ + H₂SO₄ + SO₂ -> K₂SO₄ + C₃SO₄

3

Paper-II BS

11.	In fr	oth floatation process the sulphide o	re par	articles float because				
	(X)	their surface cannot be easily wette	d by	y water.				
	(2)	(2) they are light						
	(3)	they are insoluble						
	(4)	they carry an electrostatic charge		₹.				
12.	Benz	coic acid can be prepared by reacting	g pher	enylmagnesium bromide with				
	(1)	HCOOEt.	(2)	НСНО				
	(3)	COCl ₂	(4)	· CO ₂				
13.	The	IUPAC name of [Pt(NH ₃) ₄ Br ₂]Cl ₂ i	S	,				
	(1)	Dichlorodibromotetrammineplatin	ate (I	(IV)				
	(2)	Dichlorodibromotetrammineplatin	um (I	(IV)				
	(3)	(3) Dibromotetrammineplatinate (IV) chloride.						
	(4)	Tetramminedibromoplatinum (IV)	chlor	oride				
•								
14.	Solv	ay process can not be used for the m	anufa	facture of K ₂ CO ₃ , because				
	(1)	KHCO ₃ is not stable in solution						
	(2)	ammoniacal KCl will not react wit	h CO	O_2				
	(3)	KCl solution can not be saturated v	with a	ammonia				
	(4)°	KHCO ₃ is highly soluble and henc	e can	n not be separated				
		Space For	Rou	ugh Work				

	Space For Rough Work					
	(4)	Both ammonia and chlorides act a	s ligano	ds.		
	(3)	It has three ionizable chloride gro	ups.			
	(2)	Cobalt is in +3 oxidation state.				
	(1)	The coordination number of Co is	s 6.			
9.	Whie hexa	ch of the following stat mminecobalt(III) chloride?	ements	is not true with respect to		
	(4)	intra-molecular hydrogen bondin	g			
	(3)	inductive effect				
	(2)	resonance				
	(1)	inter-molecular hydrogen bondin	g			
18.	8. The lower boiling point of o-nitrophenol when compared to p-nitrophenol is due to the presence of					
	(3)	H ₂ O	(4)	NH ₃		
	(1)	CHCl ₃	(2)	N ₂		
17.		ich of the following molecules is n	on-pola	ır?		
	(3)	electronegativity	(4)	atomic mass		
			(2)	atomic size		
16.	of (1)	long form of the periodic table is atomic number		on the properties of the elements as a function		
1,						
	(3)	$\sim 2n^2$	(4)	$n^2 + 2$		
		$n^2 + 1$	(2)	n^2		
15,	15. The total number of electrons associated with the principal quantum number n is					

20.	The	IUPAC name of $CH_2 = CH - CH_2C$	Cl is	et .
	(1)	3-chloro-1-propene	(2)	allyl chloride
	(3)	vinyl chloride	(4)	1-chloro-3-propene
21.	The	indicator used in titrating oxalic ac	id with	sodium hydroxide is
	(1)	ferroin	(2)	methyl red
	(3)	methyl orange	(4)	phenolphthalein
22.	The	electron affinities of F, Cl, Br and I	are in	the order
	(1)	F > Cl > Br > I	(2)	Cl > F > Br > I
	(3)	I > Br > Cl > F	(4)	F > Br > Cl > I
23.		ch one of the following esters is an-2-ol?	obtai	ned by esterification of ethanoic acid with
	(1)	(CH ₃) ₂ CHCOOCH ₂ CH ₃	(2)	(CH ₃) ₂ CHCOOCH ₃
	(3)	CH ₃ COOCH(CH ₃) ₂	(4)	CH ₃ COOCH ₂ CH ₃
24.		0 g of a radioactive isotope has a ope is	half-l	ife of 10 hours, the half-life of 2.0 g of the
1.0	(1)	40 h.	(2)	2.5 h.
	(3)	5 h.	45	10 h.
25.		mole of HCl required 50 g of an in entage purity of NaOH is	mpure	sample of NaOH to neutralize it exactly. The
	(1)	100	(2)	50 .,
	(3)	40	(4)	80
		Space Fo	r Rou	gh Work

8:09 7 vadro Sub. 2.09.

- 26. Lyophilic sols are more stable than lyophobic sols because, in the former,
 - (1) both positively and negatively charged particles are present
 - (2) the colloid particles are positively charged.
 - (3) the colloid particles are negatively charged.
 - (4) the colloid particles are solvated.
- 27. The deep blue colour generated on adding excess of ammonia to an aqueous solution of copper sulphate is due to the formation of
 - (1) $[Cu(NH_4OH)_4]^{2+}$

(2) $[Cu(NH_3)_2]^{2+}$

(3) [Cu(NH₃)₄]²⁺

- (4) $[Cu(NH_4OH)_2]^{2+}$
- 28. Identify the statement which is NOT TRUE for lanthanides.
 - Their ionic size increases steadily with increase in atomic number.
 - (2) Lanthanides occur together.
 - (3) The most characteristic oxidation state is +3.
 - (4) They can be separated by ion exchange method.
- 29. Carbon forms a large number of compounds and this is due to
 - (1) its non-metallic character.
 - (2) its small size
 - (3) its covalency of 4
 - (4) its unique property of catenation
- 30. For which of the following pairs the members can be distinguished by iodoform test?
 - C₆H₅CH₂OH and CH₃OH
 - (2) CH₃OH and CH₃CH₂CH₂OH
 - (3) CH₃CH₂OH and CH₃CHOHCH₃
 - (4) CH₃CH₂CH₂OH and CH₃CHOHCH₃

Space For Rough Work

NU4+CUSO4-> CU.NH40' HESO4

- 27 Which of the following reagents and conditions convert benzene to chlorobenzene? 31. Cl_2 , sunlight (2) Cl_2 , HCl and heat (1)HCl, sunlight (4) Cl_2 , Fe and heat (3) The formation of cyanohydrin from ketone is an example of a 32. electrophilic substitution (1) electrophilic addition (2) nucleophilic addition (3) nucleophilic substitution (4) The formula, (CH₃)₃C-NH₂ represents a 33. quaternary ammonium salt (1) (2) primary amine secondary amine (3) tertiary amine (4) The acid which does not contain a - COOH group is formic acid ethanoic acid (2) (1) lactic acid picric acid (4)
- 35. An element with atomic number Z = 84 and mass number A = 218 loses one alpha particle and two beta-particles successively. The daughter nucleus will have
 - (1) Z = 82 and A = 214.
 - (2) Z = 84 and A = 214.
 - (3) Z = 82 and A = 218.
 - (4) Z = 84 and A = 218.

36.	Wł per	nich among the following the following the second contract the sec	wing pairs hav	ve bo	th the e	lements	from	the s	ame	group	in	th
	(1)	Cl, Ar		625	Ti, Zr							
	(3)	Fe, Co		(4)	K, Ca							
37.	An	ideal gas cannot be lie	uefied because	е								
	(1)	intermolecular force	es are negligibl	le.								
	(2)	W										
	(3)	it solidifies before b	ecoming a ligh	ıid						13		
	(4)	its molecules are rel	_						¥			
38.	Hyd	drolysis of sucrose gene	erates	**								
	(1)	cellulose										
	(2)	two molecules of glu	acose									
	(3)	two molecules of fru	ictose									
	(4)	one molecule each o	f glucose and i	fructo	se	.33						
39.	Whi	ch one of the followin	g molecules is	опе-е	lectron i	paramag	netic ?				Ğ	
	(1)	F_2	9 R 2	(2)	СО		٠					
٠	(3)	O ₂		(4)	NO	ia.						
40.	For treage	the preparation of t-bu	ityl methyl eth	er by	Willian	nson's n	nethod,	the c	corre	ct choi	ce	of
	(1)	t-butoxide and methy	l bromide									
	(2)	methoxide and t-buty										
	(3)	methanol and 2-brom										
D:	(4)	2-butanol and methyl	bromide									
•			Space For	Roug	h Work							_
			5			2						

41.	Amo	ong NF ₃ , BF ₃ and O ₃ , permanent dip	pole m	noment is found in	\$15 \$45
	(1)	All the three	(2)	NF ₃ and BF ₃	
	(3)	NF ₃ and O ₃	(4)	BF ₃ and O ₃	
42.	The	conversion of alumina to pure Al is	cause	ed by	
	(1)	electrolytic oxidation			
	(2)	reduction with coke			
	(3)	reduction with zinc			
	<u>(</u> 4)	electrolytic reduction			
43.	The	conversion of an amide to amine ca	an be a	achieved through	
	(1)	S _N 2 substitution			
	.(2)	Hoffmann rearrangement			
	(3)	Claisen rearrangement			
	(4)	Beckmann rearrangement			
44.		sample of gasoline contains 81	% iso	octane and 19% n-heptan	e, then its octane
•	(1)	100	(2)	19	
	(3)	81	(4)	62	
45.		dioactive sample containing 600 at minutes, how many atoms still rer			utes. If the half life
	(1)	500	(2)	200	
	(3)	75	(4)	450	
, 18		Space Fo	or Ro	ugh Work	<i>a</i> . 0
					300 150
					130

46. Most favourable conditions for the formation of ionic bonds are

- (1) large cation and small anion
- (2) small cation and small anion
- (3) small cation and large anion
- (4) large cation and large anion

47. The dissociation energy of the O₂ is more than that of O₂ molecule. This is because

- (1) O₂⁺ has stronger van der Waal's forces.
- (2) O₂⁺ is paramagnetic
- (3) O_2^+ carries a positive charge.
- (4) O_2^+ has one electron less in the antibonding orbital.

48. In the electrolysis of a concentrated Brine solution, amount of chlorine gas produced by passage of 2 Faraday of electricity is

(1) 2 mol

(2) 0.25 mol

(3) 0.5 mol

(4) 1 mol

49. If 3Li6 is transmutated by deuterons, the products formed are

(1) $_{3}\text{Li}^{6} + _{1}\text{H}^{1}$

(2) $_3Li^7 + _2He^4$

 $(3)^{-3}Li^{7} + {}_{1}H^{1}$

(4) $_3Li^7 + _0n^1$

50. The enthalpies of combustion of C(graphite) and C(diamond) are -393.5 and -395.3 kJ-mol⁻¹ respectively. Then the enthalpy change for the reaction C(graphite) \rightarrow C (diamond) is

(1) $-788.8 \text{ kJ mol}^{-1}$

(2) $-1.80 \text{ kJ mol}^{-1}$

(3) 1.80 kJ mol⁻¹

(4) 788.8 kJ mol-1

51.	Whi	ch of the following is the causative	agent	of filariasis ?						
	(1)	Taenia saginata								
	(2) Echinococcus granulosus									
	(3)	Schistostoma mansoni								
	(4)	Wuchereria bancrofti								
52.	Leec	h belongs to the class								
	(1)	Archiannelida	(2)	Polychaeta						
	(3)-	Hirudinea	(4)	Oligochaeta						
5 3.	Amp	hioxus belongs to the subphylum								
	(1)	Vertebrata	(2)	Hemichordata						
	(3)	Urochordata	(4)	Cephalochordata						
54.	Scien	ntific name of House sparrow is								
	(1)	Melophus lathami								
•	(2)	Passer domesticus								
	(3)	Petronia xanthocollis								
	(4)	Eberiza melanocephala								
55.	Which of the following belongs to order Lepidoptera?									
	(1)	Butterfly	(2)	Beetle						
	(3)	Grasshopper	(4)	Mealy bug						

56. Column-I lists the type of vitamin and Column-II lists their associated deficiency diseases. Match the 2 columns and choose the correct answer from those given below:

List-I

List-II

- A. Vitamin-A
- p. Rickets
- B. Vitamin-D
- q. Beri-beri
- C. Vitamin-B₁
- r. Scurvy
- D. Vitamin-C
- s. Dermatitis
- t. Nyctalopia
- (1) A = s, B = r, C = t, D = p
- (2) A = p, B = t, C = s, D = q
- (3) A = r, B = s, C = t, D = q
- (4) A = t, B = p, C = q, D = r
- 57. Read the statement A and B.

Statement A: Enzymes are biocatalysts and are required in small quantities.

Statement B: Enzymes are not substrate specific.

- (1) Statement A is correct, B is wrong.
- (2) Both the statements are correct.
- (3) Both the statements are wrong.
- (4) Statement B is correct, A is wrong.
- 58. Which of the following is directly affecting the ozone layer?
 - (1) Sulphur dioxide
 - (2) Chlorofluorocarbon
 - (3) Nitric oxide
 - (4) Hydrogen peroxide

59.	Serto	li cells could be observed in the cro	ss sec	tion of following mammalian organ:
	(1)	Spleen	(2)	Kidney
	(3)·	Testis	(4)	Lung
60.	Folli	cle Stimulating Hormone (FSH) is p	produc	ed by
	W	Pituitary gland	(2)	Thyroid gland
	(3)	Pancreas	(4)	Ovary
61.	Whic	ch of the following is involved with	blood	clotting ?
	(1)	Eosinophil	(2)	RBC
	(3)	Platelets	(4)	Lymphocyte
62.		is the complete description of ogical environment.	of ho	w the organism relates to its physical and
	(1)	Home range	(2)	Niche
	(3)	Habitat	(4)	Territory
63.	The	first trophic level is represented by		
	(1)	Decomposers	(2)	Herbivores
	(3)	Carnivores	(4) "	Autotrophs
64.	ABO	O blood group in humans is an exam	nple fo	or
	(1)	Multiple alleles	(2)	Lethal alleles

Letoborer.

65.	Conjugation in bacteria was discovered by					
	(1)/	Tatum	(2)	Jacob		
	(3)	Wollman	(4)	Lederberg		
66.	Whi	ch of the following is a viral diseas	e ?			
	(1)	Wilt of Potato	(2)	Red rot of sugarcane		
	(3)	Leaf roll of Potato	(4)	Wilt of cabbage		
67.	The	cells of Chara possess chloroplasts	whic	h ore		
	(1)Y	Discoid				
	(3)	Stellate	(2)	Cup shaped		
	(-)		(4)	Reticulate		
68.	Late	blight of Potato is caused by				
ž.	(1)	Puccinia	(2)	Alternaria		
	(3)	Phytophthora	(4)	Ustilago		
69.	The c	cells of thallus of Anthoceros is pec	uliar i	n nossessing		
	(1)	Contractile vacuole	(2)	Two blepharoplasts		
	(3)	Eye spot				
			(174	Pyrenoid		
70.	Spore	corp is found in				
	(1)	Selaginella	(2)	Riccia		
	(3)	Marsilea	(4)	Rhynia		

71.	Coro	lloid roots are found in		
	(1)	Gnetum	(2)	Ginkgo
	(3)	Cycas	(4)	Pinus
72.	The	ovule is attached to the placenta by	a slene	der stalk which is known as
	(1)	Micropyle	(2)	Hilum
	(3)	Funicle	(4)	Nucellus
73.		e ovule is curved, becomes horse sear each other it is called	shoe sl	naped and the micropyle, chalaza and funicle
	(1)	Hemianatropous	(2)	Amphitropous
	(3)	Orthotropous	(4)	Anatropous
74.	Jatro	opha curcas is a member of the fam	ily	
	(1)	Apocynaceae	(2)	Euphorbiaceae
	(3)	Malvaceae	(4)	Convolvulaceae
75.	Fron	n which part of Atropa belladonna	the dru	g belladona is obtained?
•	(1)	Flower	.(2)	Leaves
	(3)	Root	(4)	Stem
76.	SEM	1 stands for		
	(1)	Scanning Electron Microscopy		
	(2)	Scintillant Electron Microscopy		
	(3)	Sensitive Electron Microscopy		
	(4)	Surface Electron Microscopy		

			7.7			
77.	The fluid mosaic model of plasma membrane was proposed by					
	(À)	Beadle and Tatum	(2)	Singer and Nicholson		
	(3)	Robert Brown	(4)	Watson and Crick		
78.	Wit	hin the call the site of maninetic i	.•			
70.		hin the cell the site of respiration is		•		
	(1)	Nucleolus	(2)	Golgi bodies		
	(3)	Ribosome	(4)	Mitochondria		
79.	The Tunica-Carpus concept was proposed by					
	(1)	Robert Brown		Magal:		
	(3)	Schmidt	(2)	Nageli		
	(3)	Schille	(4)	Haberlandt		
80.	The	xylem is exarch in		•		
	(1)	Petiole	(2)	Stem		
	(35)	Root	(4)	Leaf		
01	T.:cc					
81.	4.5.1	Diffusion of water through selectively permeable membrane is				
	(1)	Autolysis	(2)	Osmosis		
	(3)	Plasmolysis	(4)	Diffusion		
82.	Chlo	Chlorophyll is a compound that contains				
	(1)	Cobalt	»			
		26	(X)	Iron		
	(3)	Copper	(4)	Magnesium		

83.	The first product of Krebs-cycle is a				
	.(1)	6-C compound	(2)	4-C compound	
	(3)	3-C compound	(4)	5-C compound	
84.	In O	numeia the leaves are modified into			
04.		puntia the leaves are modified into			
	(1)	Phylloclades	(2)	Scales	
	(3)	Stolons	(4)	Spines	
85.	Synthesis of DNA takes place by				
	(1)	Replication	(2)	Transduction	
	(3)	Transcription	(4)	Transformation	
0.0					
86.	The repressor protein in Lac operon is a/an				
	(1)	Tetramer .	(2)	Octomer	
	(3)	Dimer	(4)	Polymer	
87.				et is called	
071					
	(1)	Double cross	(2)	Back cross	
•	(3)	Reverse cross	(4)	Test cross	
88.	A Corm is				
	(1) The swollen end of an underground stem			n	
	(2)	(2) A swollen root			
	(3)	(3) A compressed swollen vertical underground stem			
	(4) Swollen horizontal underground stem				

89.	Plants of salty sea shore wet lands are called				
	(1)	Saprophytes	(2)	Halophytes	
	(3)	Heliophytes	(4)	Hydrophytes	
90.	Whi	Which of the following is called the 'power house' of the cell?			
	(1)	Golgi complex	(2)	Mitochondria	
	(3)	Lysosome	(4)	Ribosome	
91.	The pathogen which causes measles is				
	(1)	Streptococcus	(2)	Rubcola	
	(3)	Mycobacterium	(4)	Vibreo	
92.	During cell cycle chromosome divides in				
	(1)	M phase	(2)	G _j phase	
	(3)	S phase	(4)	G ₂ phase	
		95			
93.	The fusion or union of male and female gamete is called				
	(1)	Heterogamy	(2)	Hologamy	
	(3)	Syngamy	(4)	Isogamy	
	5				
94.	Form	Formation of male individuals by parthenogenesis is called			
	(1)	Heterogony	(2)	Thelytoky	
	(3)	Amphitoky	SAT	Arrenotoky	

95. Thylakoids are found in				
	(1)	Spindle fibre	(Z)	Chloroplasts
	(3)	Mitochondria	(4)	Centriole
v				· · · · · · · · · · · · · · · · · · ·
96.	6. During mitosis in which stage centromere divides?			des ?
	(1)	Telophase	(2)	Prophase
	(3)	Metaphase	(4)	Anaphase
97. In man the sex determination system is			*	
	(1)	XX-YO	(2)	XX-XO
	(3)	XX-XY	(4)	ZZ-ZW
98.	Chromosome compliment in Klimefelter's syndrome is			drome is
	(1)	44A: XYY	(2)	44A: XXY - 21
	(3)	44A: XO - Twiner	(4)	44A:XXX
99.	When one gene hides the expression of another gene is called			
• •	(1)°	Epistasis	(2)	Pleiotropy
	(3)	Co-dominance	(4)	Complimentarity
100.	. Which of the following belongs to phylum protozoa?			
	(1)	Ascaris lumbricoides	(2)	Euglena viridis
	(3)	Aurelia aurita	(4)	Taenia solium
			1	