

DIRECTORATE OF MINORITIES

MINORITIES WELFARE DEPARTMENT

MATHEMATICS

S.S.L.C Super Notes: - 2020 – 21

-: Resource Persons :-

ArunKumar MMDRS Peresandra, Chikkaballapur Mob:9880892266

Vijayamahantesh Badiger MMDRS Gillesuguru, Raichur Mob: 9742791703

Khajappa Madyal MMDRS Afzalpur, Kalaburagi Mob: 9035424447

Mithun Chakravarthy MMDRS Rangapura Kawali Arsikere, Hasan Mob: 8197346113

Thalavara Shivappa, MMDRS Harapanahalli Town, Vijayanagara dist Mob: 9916142961

		Index		
Sl	Marks to	Name of the chapter/content	Page	Marks
No.	be		no.	to be
	expected			allotted
1	1 mark	Surface area and volumes- Learn All formulae	2-3	1
2		Arithmetic progression – finding terms	4-5	2
3		Arithmetic progression –	6-7	2
4	2 marks	Coordinate geometry- Problems on distance formula	8-9	2
5		Quadratic equations- solving quadratic equation by formula method	10-11	2
6		Pair of linear equations in two variables- solve x & y	12-13	2
7		Constructions – dividing the line segment	14-15	2
8		Constructions – Tangent construction	16-17	3
9	3 marks	Statistics – Mean, Median & Mode	18-21	3
10		Statistics – Ogive graph	22-25	3
11		Circle- theorem	26	3
12	4 marks	Pair of linear equations in two variables- graphical solution(x & y)	27-30	4
13		Constructions – construction of similar triangles	31-33	4
14	4 or 5	Triangles – theorem	34-37	5
	marks			
		Total		<u>38</u> .

°°°

°° °° °°

~

~ ~ ~ ~

~

~

 -00

_%___%___%___%

~

%

°°

-00 -00 -00

_%___%___%

~

1. Surface area and volume: All Formulae Cuboid :

Lateral surface area = LSA = 2h (l + b) Total surface area = TSA = 2 (lb + bh+ lh) Volume = lbh. Area of four walls of a room = 2h (l + b) Diagonals of cuboid = $\sqrt{l^2 + b^2 + h^2}$

Cube :

Lateral surface area = LSA = $4a^2$ Total surface area = TSA = $6a^2$ Volume = a^3 (a is edge of cube) Diagonal of cube = $\sqrt{3}$ a.

Cylinder :

Right circular cylinder LSA (or) CSA = $2\pi rh$ TSA = $2\pi rh + 2\pi r^2$ (or) TSA = $2\pi r (r + h)$ Volume = πr^2h .

Hollow cylinder.

Thickness of cylinder = R -r. Area of cross section = π (R² -r²) External CSA = 2π Rh Internal CSA = 2π rh. TSA = External CSA + Internal CSA + area of two ends. = 2π Rh + 2π rh + 2π (R² - r²) Volume = π (R² - r²) h. **Right circular cone** : CSA (or) LSA = π rl TSA = π r (r + l) Volume = $\frac{1}{3}\pi$ r2 h Slant height = $\sqrt{h^2 + r^2}$.

Frustum of a cone :

Slant height = $\sqrt{h^2 + (R - r)^2}$.. LSA = π (R + r) l. TSA = π [R² + r² + (R + r) l] Volume = $\frac{1}{3}\pi h$ [R² + r² + Rr]. Sphere:

 $CSA = 4\pi r^2$ TSA = $4\pi r^2$ Volume = $\frac{4}{3}\pi r^3$.

Hemisphere:

 $CSA = 2\pi r^2$ $TSA = 3\pi r^2$ $Volume = \frac{2}{3}\pi r^3.$

2. Arithmetic Progression: nth terms of A.P

 $a_n = a + (n-1)d$

- 1. Find the 20th term from the last term of the AP: 3, 8, 13, ..., 253. Solution: We have, last term = 1 = 253And, common difference $d = 2^{nd}$ term -1^{st} term = 8 - 3 = 5Therefore, 20^{th} term from end = 1 -(20 – 1) × d = 253 – 19 × 5 = 253 – 95 = 158. 2. Find the number of natural numbers between 101 and 999 which are divisible by both 2 and 5. Solution: Natural numbers between 101 and 999 divisible by both 2 and 5 are 110, 120, ... 990. so, $a_1 = 110$, d = 10, $a_n = 990$ We know, $a_n = a_1 + (n - 1)d$ 990 = 110 + (n - 1) 10(n-1) = 990 - 11010 \Rightarrow n = 88 + 1 = 89. 3. Find how many integers between 200 and 500 are divisible by 8. Solution: AP formed is 208, 216, 224, ..., 496 Here, $a_n = 496$, a = 208, d = 8 $a_n = a + (n - 1) d$ $\Rightarrow 208 + (n - 1) \times 8 = 496$ \Rightarrow 8 (n – 1) = 288 \Rightarrow n – 1 = 36 \Rightarrow n = 37. 4. How many terms of the AP 18, 16, 14, be taken so that their sum is zero? Solution: Here, a = 18, d = -2, $s_n = 0$ Therefore, n2[36 + (n - 1)(-2)] = 0 \Rightarrow n(36 - 2n + 2) = 0 \Rightarrow n(38 - 2n) = 0 \Rightarrow n = 19. 5. Which term of the AP: 3, 8, 13, 18, ..., is 78? Solution: Let a_n be the required term and we have given AP
 - 3, 8, 13, 18,

Here, a = 3, d = 8 - 3 = 5 and $a_n = 78$

Now, $a_n = a + (n - 1)d$ $\Rightarrow 78 = 3 + (n - 1) 5$ $\Rightarrow 78 - 3 = (n - 1) \times 5$ $\Rightarrow 75 = (n - 1) \times 5$ $\Rightarrow 755 = n - 1$ $\Rightarrow 15 = n - 1$ $\Rightarrow n = 15 + 1 = 16$ Hence, 16th term of given AP is 78.

Practice:

- 6. Find the 9th term from the end (towards the first term) of the A.P. 5, 9,13,185.(ans: 153).
- 7. How many two-digit numbers are divisible by 3?. (ans: 30)
- 8. Find the middle term of the A.P. 6,13,20,...,216. (Ans;111)
- 9. Find the 25th term of an arithmetic progression 2, 6, 10, 14,(ans: 98)
- 10. Find the 10th term of arithmetic progression 2, 7, 12 using the formula.(ans: 47).

3. Arithmetic Progression: Sum of nth terms

$$S_n = \frac{n}{2} [2a + (n - 1)d] \& S_n = \frac{n}{2} [a + 1]$$

1. Find the sum of the A.P: 1, 3, 5, 199.
Solution: a=1, d=2 and last term l=199
 $a_n = a + (n - 1)d$
 $\Rightarrow 199 = 1 + (n - 1) \times 2$
 $\Rightarrow 2n = 200$
 $n = 100$
 $\therefore sum = \frac{n}{2} [a + 1]$
 $= \frac{100}{2} [1 + 199]$
 $= 10000$
2. Find the sum of the series 51+50+49+----+21.

Solution: a=51, d=-1 and last term l=21 $a_n=a+(n-1)d$ $\Rightarrow 21=51+(n-1)\times -1$ 21=51+1-n $\Rightarrow n=52-21$ n=31 $\therefore sum=\frac{n}{2}[a+1]$ $=\frac{31}{2}[51+21] = \frac{31}{2}[72]$ =1116

3. How many terms of the AP 18, 16, 14, be taken so that their sum is zero? Solution: Here, a = 18, d = -2, s_n = 0 Therefore, $\frac{n}{2} [36 + (n - 1) (-2)] = 0$ $\Rightarrow n(36 - 2n + 2) = 0$ $\Rightarrow n(38 - 2n) = 0$ $\Rightarrow n = 19$

- Find the sum of first 22 terms of an AP in which *d* = 7 and 22nd term is 149.
 - Solution: Given, Common difference, d = 7 22^{nd} term, $a_{22} = 149$ To find: Sum of first 22 term, S_{22} By the formula of nth term, we know; $a_n = a + (n - 1)d$ $a_{22} = a + (22 - 1)d$ $149 = a + 21 \times 7$ 149 = a + 147 a = 2 = First term Sum of nth term is given by the formula; $S_n = n/2 (a + a_n)$ = 22/2 (2 + 149) $= 11 \times 151$ = 1661
- 5. Find the sum of first 20 natural numbers which are divisible by 4. Solution: The A.P which are divisible by 4 is 4, 8, 12, Here we have to find a_n . a=4, d=4

 $a_n = a + (n-1d)$ $a_{20} = 4 + 19x4$ $a_{20} = 4 + 76$ $a_{20} = 80.$ ∴sum = $\frac{n}{2} [a+1]$ $= \frac{20}{2} [4+80]$ = 10x84 = 840.

Practice :

- 6. Find the sum of first 50 natural numbers which are divisible by 5.
- 7. Find the sum of : 1+5+9+----- up to 25 terms.
- 8. Find the sum of first 30 terms of the A,P 2, 6, 10,
- 9. How many terms of the A.P. 27,24,21,... should be taken so that their sum is zero?
- 10. Find the sum of 2+5+8+..... to 20 terms using the formula.

4. <u>Coordinate geometry:</u> Problems on distance formula.

Distance formula = $\sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2}$.

 Find the distance between the two points (2, 5) & (7, 6). Solution: here x₁=2, x₂=7, y₁=5 & y₂=6. Put all the values in the given formula.

$$d = \sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2}.$$

= $\sqrt{(7 - 2)^2 + (6 - 5)^2}.$
= $\sqrt{(5)^2 + (1)^2}.$
= $\sqrt{25 + 1}.$
= $\sqrt{26}$ sq.units

2. Prove that the points (7, 10), (-2, 5) and (3, -4) are the vertices of an isosceles right triangle.

Solution:

Let A (7, 10), B(-2, 5), C(3, -4) be the vertices of a triangle. AB = $\sqrt{(-2-7)^2 + (5-10)^2}$ = $\sqrt{81+25} = \sqrt{106}$ BC = $\sqrt{(3+2)^2 + (-4-5)^2} = \sqrt{25+81} = \sqrt{106}$ AC = $\sqrt{(3-7)^2 + (-4-10)^2}$ = $\sqrt{16+196} = \sqrt{212}$ AB = BC = $\sqrt{106}$ \therefore ABC is an isosceles Δ(*i*) AB² + BC² = $(\sqrt{106})^2 + (\sqrt{106})^2$ = 106 + 106 = 212 = AC² ... [By converse of Pythagoras theorem

 Δ ABC is an isosceles right angled triangle. ...(ii) From (i) & (ii), Points A, B, C are the vertices of an isosceles right triangle.

3. Find that value(s) of x for which the distance between the points P(x, 4) and Q(9, 10) is 10 units. (2011D) Solution: PQ = 10 ...Given PQ² = 10² = 100 ... [Squaring both sides $(9 - x)^2 + (10 - 4)^2 = 100...$ (using distance formula $(9 - x)^2 + 36 = 100$ $(9 - x)^2 = 100 - 36 = 64$ $(9 - x) = \pm 8$...[Taking square-root on both sides 4. Find the distance of the point (-3, 4) from the x-axis.

Solution: B(-3, 0), A (-3, 4) Here x₁=-3, x₂=-3, y₁=0 & y₂=4. Put all the values in the given formula. $d=\sqrt{(x2-x1)^2 + (y2-y1)^2}$.

$$AB = \sqrt{(-3+3)^2 + (4-0)^2}$$
$$AB = \sqrt{(4)^2} = 4$$

5. Find distance between the points (0, 5) and (-5, 0). Solution:

Here
$$x_1 = 0$$
, $y_1 = 5$, $x_2 = -5$ and $y_2 = 0$)
 $\therefore \qquad d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
 $= \sqrt{(-5 - 0)^2 + (0 - 5)^2}$
 $= \sqrt{25 + 25} = \sqrt{50} = 5\sqrt{2}$ units

Practice:

- 6. Find the distance between the two points(-4, 0) & (0, 3).
- 7. Find the distance between the points(-3, 4) from its origin.
- 8. The point A(3, y) is equidistant from the points P(6, 5) and Q(0, -3). Find the value of y.
- 9. Find the distance between the points A(3, 6) and B(5, 7) using distance formula.
- 10. Find the distance between the co-ordinate of the points A(2, 3) and B(10, -3).

5. Quadratic equations: Formula method.

Quadratic formula is $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

 Solve by using quadratic formula: x² -3x+1=0. Solution: a=1, b=-3, c=1

Quadratic formula is $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4X1X1}}{2X1}$ $x = \frac{3 \pm \sqrt{9 - 4}}{2X1}$ $x = \frac{3 \pm \sqrt{5}}{2}$ $x = \frac{3 \pm \sqrt{5}}{2}$ or $x = \frac{3 - \sqrt{5}}{2}$

2. Solve the quadratic equation by using the formula: x²-6x-4=0 Solution: a=1, b=-6, c=-4

Quadratic formula is
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 $x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4X1X - 4}}{2X1}$
 $x = \frac{6 \pm \sqrt{36 + 16}}{2}$
 $x = \frac{6 \pm \sqrt{52}}{2} =$
 $x = \frac{6 \pm \sqrt{52}}{2}$ or $x = \frac{6 - \sqrt{52}}{2}$

3. By using the quadratic formula, find the solutions: $6x^2-7x-5=0$. Solution: a=6, b=-7, c=-5.

Quadratic formula is
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 $x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4X6X - 5}}{2X6}$
 $x = \frac{7 \pm \sqrt{49 + 120}}{12}$
 $x = \frac{7 \pm \sqrt{169}}{12} = \frac{7 \pm 13}{12}$
 $x = \frac{7 \pm 13}{12}$ or $x = \frac{7 - 13}{12}$
 $x = \frac{20}{12}$ or $x = \frac{-6}{12}$
 $x = \frac{5}{3}$ or $x = -\frac{-1}{2}$

4. Solve the quadratic equation by formula: $2x^2+11x+5=0$. Solution: a=2, b=11, c=5.

Quadratic formula is $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{c}$

$$x = \frac{-11 \pm \sqrt{(11)^2 - 4X2X5}}{2X5}$$

$$x = \frac{-11 \pm \sqrt{121 - 40}}{10}$$

$$x = \frac{-11 \pm \sqrt{121 - 40}}{10}$$

$$x = \frac{-11 \pm \sqrt{81}}{10} = \frac{-11 \pm 9}{10}$$

$$x = \frac{-11 \pm 9}{10} \text{ or } x = \frac{-11 - 9}{10}$$

$$x = \frac{-2}{10} \text{ or } x = \frac{-20}{10}$$

$$x = -\frac{1}{5} \text{ or } x = -2$$

5. Solve the quadratic equation using formula: x²-8x+15=0. Solution: a=2, b=11, c=5.

Quadratic formula is
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 $x = \frac{-11 \pm \sqrt{(11)^2 - 4X2X5}}{2X5}$
 $x = \frac{-11 \pm \sqrt{121 - 40}}{10}$
 $x = \frac{-11 \pm \sqrt{81}}{10} = \frac{-11 \pm 9}{10}$
 $x = \frac{-11 \pm 9}{10}$ or $x = \frac{-11 \pm 9}{10}$
 $x = \frac{-11 \pm 9}{10}$ or $x = \frac{-11 - 9}{10}$
 $x = \frac{-2}{10}$ or $x = \frac{-20}{10}$
 $x = -\frac{1}{5}$ or $x = -2$

Practice:

Solve the quadratic equation by using formula method

6. $2x^2+x-5=0$. 7. $x^2+2x+1=0$. 8. $5x^2+31x+6=0$. 9. $x^2-x-30=0$. 10. $4x^2-11x-3=0$. 11. $x^2+2x-5=0$.

6. Pair of linear equations in two variables: solve x & y.

1. Solve the equations by elimination method: x+y=-2 & 2x-y=8. Solution: let the given equations be x+y=-2 & 2x-y=8.

x+y=-2 ------(1) 2x-y=8 ------(2) By eliminating add the above two equations. We get x+y=-2 2x-y=8 3x=6x=2

put above x value in any one equation we get y value equation (1) becomes 2+y=-2

2. Solve: x-y=1& 2x-3y=5. Solution: The given two equations are x-y=1& 2x-3y=5. x-y=1 -----(1) 2x-3y=5 -----(2) For eliminating, multiple 2 to the equation (1) we get 2x-2y=22x-3y=5subtract this two v=3put y value in equation (1) we get x-(-3)=1 x = -23. Solve: x-2y=2 & 2x-y=-8. Solution: The given two equations are x-2y=2 & 2x-y=-8. X-2y=2 -----(1) 2x-y=-8----(2)

For eliminating, multiple 2 to the equation (1) we get

$$2x-4y=4$$

2x-y=-8 subtract this two

put y value in equation (1) we get
$$x-2(-3)=1$$

 $x=-5$

4. Solve: 3x+2y = -5 & x-6y = -15. Solution: The given two equations are x-2y=2 & 2x-y=-8. 3x+2y=-5 -----(1) x-6y = -15----(2)For eliminating, multiple 3 to the equation (2) we get 3x + 2y = -53x-18y = -45subtract this two v=20 in equation (2) we get x-6(20) = -45put y value x=75 5. Solve: x-2y=8 & 2x-3y=14. Solution: The given two equations are x-2y=8 & 2x-3y=14. x-2y=8 -----(1) 2x-3y=14----(2)For eliminating, multiple 2 to the equation (1) we get 2x-4y = 162x-3y = 14subtract this two v = -2in equation (1) we get put y value x-2(-2)=8x=4

Practice:

- Solve the following equations 1)x+2y=10 & 2x-4y=-4. 2) 3x+y=-2 & x+2y=1. 3) x-y=1 & 2x-3y=5. 4) 3x+4y=10 & x-8y=-6. 5) x+2y=9 & 2x-y=3. 6) 2x+y=9 & 3x-2y=-4. 7) 8x+2y=-2 & 4x-6y=-22. 8) x-2y=8 & 3x-6y=9. 9) x-5y=-14 & 6x+y=9. 10) x-2y=2 & 2x+y=-8. 11) x-2y=-9 & 3x+y=1.
- 12) x+y=-7 & 2x-3y=1. 13)x-2y=-7 & 3x+2y=3. 14) 4x-2y=16 & 3x+y=2. 15) x+4y=2 & 3x-6y=18. 16) x-y=5 & 2x+y=-11. 17) 6x+y=1 & 2x-y=7. 18) x+y=4 & 2x-3y=18. 19) x+y=-2 & 2x+4y=-14. 20) 2x+3y=-5 & 4x+8y=-8. 21) x+2y=7 & 3x-4y=-9.

7. <u>Constructions</u>: Dividing the line segment

1. Draw a line segment of length 9cm and divide it in the ratio 2:3.

2. Draw a line segment of length 7.6cm and divide it in the ratio 5:8.

RASANTH KUMAR ROYAI

3. Draw a line segment of length 8.3cm and divide it in the ratio 2:5.

4. Draw a line segment PQ = 8.4 cm. Divide PQ into four equal parts using ruler and compass.

5. Draw a line segment of length 7.6cm divide it in the ratio 3:5.

Practice:

- 6. Draw a line of length 7cm, divide it in the ratio 2:4.
- 7. Draw a line segment then divide internally in the ratio of 3:7.
- 8. Draw a line segment AB=10cm & divide it in the ratio 5:8.
- 9. Draw a line of length 7.3cm and then divide it in the ratio 4:6.
- 10. Draw a line segment of AB=8cm and divide it in the ratio 3:2 by geometrical construction.
- 11. Construct a tangent to a circle of radius 4cm at any point P on its circumference.

8. Constructions : Tangent construction

1. Construct tangents to a circle of radius 5cm such that the angle between the tangents is 60°.

2. Construct a circle of radius 4.5cm, such that the angle between the two radii is 135^o.

3. Draw a circle with the help of a bangle. Take a point outside the circle. Construct the pair of tangents from this point to the circle.

4. Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measure its length.

Justification: In \triangle BPO, we have \angle BPO = 90°, OB = 6 cm and OP = 4 cm \therefore OB² = BP² + OP² [Using Pythagoras theorem]

$$\Rightarrow BP = \sqrt{OB^2 - OP^2}$$

$$\Rightarrow BP = \sqrt{36 - 16} = \sqrt{20} \text{ cm} = 4.47 \text{ cm}$$

Similarly, BQ = 4.47 cm

5. Draw a line segment AB of length 8 cm. Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm. Construct tangents to each circle from the centre of the other circle.

Justification:

On joining BP, we have $\angle BPA = 90^\circ$, as $\angle BPA$ is the angle in the semicircle. $\therefore AP \perp PB$

Since BP is the radius of given circle, so AP has to be a tangent to the circle. Similarly, AQ, BR and BS are the tangents.

- 6. Construct a pair of tangents to a circle of radius 6.2cm from an external point 3.8 cm away from the circle.
- 7. Construct a pair of tangents to a circle of radius 4cm from an external point 4 cm away from the circle.
- 8. Construct a tangent to a circle of radius 3.5cm from a point on the concentric circle of radius 7cm and measure its length.
- 9. Construct a pair of tangents to a circle of radius 5.5cm at the end point of radii. The angle between the two radii is 90^o.

9. Statistics : Mean, Median & Mode.

Mean for grouped data, $x = \frac{\sum fx}{n}$ (direct method) Median for grouped data, median= LRL+ $\left\{\frac{\frac{n}{2}-fc}{fm}\right\} x h$ Mode for grouped data, Mode=LRL+ $\left\{\frac{f1-f0}{2f1-f0-f2}\right\} x h$.

1. Find the mean, median and mode for the gollowing data.

C.I	10-20	20-3	0	30-40	40-50	50-60
f	5	2		3	6	4
To find t	he mear	ì,			_	
C.I	f	Х	fx			
10-20	5	15	75			
20-30	2	25	5	0		
30-40	3	35	105			

270

220

 $\sum fx = 720$

$$50-60 \quad 4$$

$$n=20$$

$$x = \frac{\sum fx}{n}$$

$$x = \frac{720}{20}$$

40-50

6

45

55

To find the median, first we should find $\frac{n}{2}$, $=\frac{20}{2}=10$

					4	4	
C.I	f	fc					
10-20	5	5					
20-30	2	7					
30-40	3	10					
40-50	6	16					
50-60	4	20					
	n=20						
Media	n= LRL+	$+\left\{\frac{\frac{n}{2}-fc}{fm}\right\}$	x h	LRL=30), f _m =3	, f _c =7 &	& h=1
=	$=30+\left\{\frac{10}{3}\right\}$	$\left(\frac{-7}{3}\right) \times 1$	0 =	30+1x10)		

Median = 30+10= 40

To find the mode, note that f_1 , $f_0 \& f_2$.

C.I	f				
10-20	5				
20-30	2				
30-40	3 f ₀				
40-50	6 f ₁				
50-60	4 f ₂				
Mode=LF	$RL + \left\{ \frac{f}{2f1} \right\}$	$\left[\frac{1-f0}{-f0-f2}\right] x h,$	LRL=40, f	1=6, f ₀ =3 & f ₂	2=4.
=40	$+\left\{\frac{6-3}{12-3-}\right.$	$\frac{1}{4}$ X10 \Rightarrow 40	$+(\frac{3}{5})X10$		
=40-	+6.				
Mode=4	.6				

 C.I
 2-6
 7-11
 12-16
 17-21
 22-26

5

C.I	2-6	7-11		12-16	17-21
f	7	13		8	7
To find t	he mear	ì,			_
C.I	f	Х	fx		
2-6	7	4		28	
7-11	13	9	1	17	
12-16	8	14	1	12	
17-21	7	19	1	33	
22-26	5	24	1	20	
	n=40		Σ	f <i>x</i> =510	
$x = \frac{\sum fx}{\sum fx}$					
n 510					
$X = \frac{1}{40}$					

Mean=12.75

To find the median, first we should find $\frac{n}{2}$, = $\frac{40}{2}$ = 20

C.I	f	fc
2-6	7	7
7-11	13	20
12-16	8	28
17-21	7	35
22-26	5	40
	n=40	

median= LRL+
$$\left\{\frac{n}{2}-fc}{fm}\right\}$$
 x h LRL=7, fm=13, fc=7 & h=5
=7+ $\left\{\frac{20-13}{7}\right\}$ x 5 = 7+5
Median = 12

<u>To find the mode</u>, note that f_1 , $f_0 \& f_2$.

C.I	f			
2-6	7 f ₀			
7-11	13 f ₁			
12-16	8 f ₂			
17-21	7			
22-26	5			
Mode=LF	$L+\left\{\frac{f^2}{2f^{1-2}}\right\}$	$\left(\frac{1-f0}{-f0-f2}\right) x h,$	LRL=7, f ₁ =	13, f ₀ =7 & f ₂ =8.
=7+	$\left\{\frac{13-7}{26-7-8}\right\}$	$X5 \Rightarrow 7 + (\frac{6}{12})$	<u>,</u>)X10	
=7+5	5.4.			
=12.4	4.			

3. Find the mean, median and mode for the gollowing data.

C.I	1-5	6-10	11-15	16-20	21-25
f	6	7	4	8	5

To find the mean,

C.I	f	х	fx		
1-5	6	4	24		
6-10	7	9	63		
11-15	4	14	56		
16-20	8	19	152		
21-25	5	24	120		
	n=30		$\sum fx = 415$		
$x = \frac{\sum fx}{n}$					

$$x = \frac{415}{30}$$

Mean=13.83

To find the median, first we should find $\frac{n}{2}$, = $\frac{30}{2}$ = 15

C.I	f	fc
1-5	6	6

6-10	7	13		
11-15	4	17		
16-20	8	25		
21-25	5	30		
	n=30			
media	n= LRL-	$+\left\{\frac{\frac{n}{2}-fc}{fm}\right\} X$	h	LRL=11, f _m =4, f _c =13 & h=5
	$=11+\left\{\frac{1}{2}\right\}$	$\left(\frac{15-13}{4}\right) \times 5$	=	11+2.5
Me	dian = 1	135		

<u>To find the mode</u>, note that f_1 , $f_0 \& f_2$.

C.I	f			
1-5	6			
6-10	7			
11-15	4 f ₀			
16-20	8 f ₁			
21-25	5 f ₂			
Mode=LF	$RL + \left\{ \frac{f}{2f1} \right\}$	$\left\{\begin{array}{c}1-f0\\-f0-f2\end{array}\right\} x h,$	LRL=16, f ₁ =8	3, f ₀ =4 & f ₂ =5.
=16	$+\left\{\frac{8-4}{16-4-}\right.$	$\overline{5}X5 \Rightarrow 16+$	$-(\frac{4}{7})X10$	
=16-	+5.71.			
=21.'	71.			

Practice:

Find the mean, Median and Mode for the following data.

C.I	0-20	20-40	40-60	60-80	80-100
f	3	4	2	7	4

C.I	3-13	13-23	23-33	33-43	43-53	53-63
f	12	9	8	13	5	3

C.I	2-6	7-11	12-16	17-21	22-26
f	5	7	4	8	6

C.I	1-5	6-10	11-15	16-20	21-25
f	1	2	4	1	2

2.

The following table gives production yield of rice per hectare in some farms of a village:

Production yield (in kg/hectare)	10-20	20-30	30-40	40-50	50-60
No. of farms	3	9	12	20	6

Draw a 'more than type' ogive. Also, find median from the curve.

000

°°

Production yield (in kg/ hectare) Class interval	Frequency	Production yield more than or equal to	c,f
10 - 20	3	10	50
20 - 30	9	20	47
30 - 40	12	30	38
40 - 50	20	40	26
50 - 60	6	50	6

3. Draw a 'less than type' ogive for the following frequency distribution.

Class	15 - 20	20 - 25	25 - 30	30 - 35	35 - 40	40 - 45
Frequency	13	18	31	25	15	5

Solution:

Class	Frequency
Less than 20	13
Less than 25	13 + 18 = 31
Less than 30	31 + 31 = 62
Less than 35	62 + 25 = 87
Less than 40	87 + 15 = 102
Less than 45	102 + 5 = 107

0

°°°

°°

°°° °°°

°°

00 00 00

.

000

°° °° °°

000

<u>"</u>

000

4.

The following table gives production yield of rice per hectare in some farms of a village:

Production yield (in kg/hectare)	10-20	20–30	3040	40–50	50-60
No. of farms	3	9	12	20	6

Draw a 'more than type' ogive. Also, find median from the curve.

Solution:

Production yield (in kg/ hectare) Class interval	Frequency	Production yield more than or equal to	c.f
10 - 20	3	10	50
20 - 30	9	20	47
30 - 40	12	30	38
40 - 50	20	40	26
50 - 60	6	50	6

0°0

, ,

000

°°

00 00

°°

°°°

°°° °°

000000

"

°°

°° °° °°

°°

000

°°

000

000

°°

Practice:

5.

No. of mangoes	5052	53-55	56–58	5961	6264
No. of boxes	15	110	135	115	25

6.

Marks obtained	Less than	Less than	Less than	Less than
	20	30	40	50
No. of students cumulative frequency	8	13	19	24

7.

8.

9.

Weight	(in kg	g)		50-	-55 5	5-60	60	-65	6	5-70	7	0-75	75-80
No. of c	andid	lates	6	1	3	18		45		16		6	2
Class		0-	-20	Γ	20-40	40-	-60		60-	80	80)-100	
Frequen	cy	1	16		14	24	4		26	5		x	
Length (in mm)	109-1	117	118–1	26	127–135	136-14	14	145-	153	154-	162	163-17	L
No. of eaves	4		6		14	13		6		4		3	

11. <u>Circle</u>: Theorems.

1. Prove that "the tangent at any point of a circle is perpendicular to the radius through the point of contact". Solution:

Given: a circle C(0, r) and a tangent l at point A.

To prove: $OA \perp I$

Construction: Take a point B, other than A, on the tangent l. join OB. Suppose OB meets the circle in C.

Proof: We know that, among all line segment joining the point 0 to a point on l, the perpendicular is shortest to l.

OA=OC (Radius of the same circle)

Now, OB=OC+BC.

∴ 0B>0C

⇒0B>0A

⇒0A<0B

B is an arbitrary point on the tangent l. Thus, OA is shorter than any other line segment joining O to any point on l. Here $OA \perp l$.

2. Prove that "the lengths of the tangent drawn from an external point to the circle are equal".

Solution:

Given: A circle with center O. PA & PB are two tangents drawn from an external point P.

To prove: PA=PB

Construction: Join OA, OB & OP.

Proof: It is known that a tangent is at any point of a circle is perpendicular to the radius through the point of contact. OA \perp PA & OB \perp PB

In ∆OPA & OPB, ∟OPA=∟OPB

OA=OB (radii)

OP=OP (common)

Hence $\triangle OPA$ is congruent to $\triangle OPB$. Therefore AP=PB.

12. <u>Pair of linear equations in two variables</u>: Graphical solution.

1. Solve by graphically: x-y=4 & x+y=10.

Solution: x-y=4-----(i) & x+y=10-----(ii) From equation (i), we have the following table:

x	0	4	7
y	- 4	0	3

From equation (ii), we have the following table:

x	0	10	7
y	10	0	3

Plotting this, we have

2. Show graphically the given system of equations 2x + 4y = 10 and 3x + 6y = 12 has no solution.

Solution: 2x+4y=10-----(i) & 3x+6y=12-----(ii) From equation (i), we have the following table:

x	1	3	5
y	2	1	0

From equation (ii), we have the following table:

x	2	0	4
y	1	2	0

Plot the points D (2, 1), E (0, 2) and F (4,0) on the same graph paper. Join D, E and F and extend it on both sides to obtain the graph of the equation 3x + 6y = 12.

We find that the lines represented by equations 2x + 4y = 10 and 3x + y = 12 are parallel. So, the two lines have no common point. Hence, the given system of equations has no solution.

3. Draw the graph of 2x + y = 6 and 2x - y + 2 = 0.

Solution:

We have, 2x + y = 6-----(i) 2x-y=-2 -----(ii)

From equation (i), we have the following table:

X	0	3	2
y	6	0	2

From equation (ii), we have the following table:

x	0	– 1	1
у	2	0	4

4. Draw the graph of the equations x - y + 1 = 0 and 3x + 2y - 12 = 0. Solution: we have x-y=-1 ------(i) 3x+2y=12-----(ii)

From equation (i), we have the following table:

×	- 1	0	2
y	0	1	3

Practice: solve the following equations graphically

5. x+2y=9 & 2x-y=3.
 6. x-2y=2 & 2x+y=-8.
 7. x-2y=-9 & 3x+y=1.
 8. x+2y=4 & 6x+y=13.
 9. X+2y=1 & 2x+3y= -1.
 10. X-2y= 8 & 2x-3y= 14.
 11. x-y= 5 & 2x+y=- 11.
 12. x+y= -7 & 2x-3y= 1.
 13. x+4y= 2 & 3x-6y = 18.

PRASANTH KUMAR ROYAL'S

13. <u>Constructions</u>: Constructions of similar triangles.

This construction is depends on two type of fractions, one is proper and another is improper fraction. Let's see both in different examples.

1. Construct a triangle with sides 4cm, 5cm & 6cm and then another triangle whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.

2. Construct a triangle with sides 5cm, 6cm & 7cm and then another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.

Solution:

3. Construct a right angled triangle with sides 3cm & 4cm and then another triangle whose sides are $\frac{5}{3}$ of the corresponding sides of the first triangle.

4. Construct a triangle ABC with base AB=5cm, \square ABC=60^o & BC=7cm and then another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.

Solution:

5. Construct a triangle ABC with AB=5cm, $_ABC=60^{\circ}$ & BC=6cm and then another triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the first triangle.

Solution:

Practice:

- 6. Draw a triangle ABC with side BC=6cm, $\bot B=60^{\circ}$, $\bot A=10^{\circ}$ Then construct a triangle a triangle whose sides are $\frac{1}{3}$ times the corresponding sides of $\triangle ABC$.
- 7. Draw a triangle PQR with side QR=5cm, $\Box Q=45^{\circ}$, $\Box P=105^{\circ}$. Then construct a triangle a triangle whose sides are $\frac{5}{2}$ times the corresponding sides of ΔPQR .
- 8. Construct an isosceles triangle whose base is 5cm and altitude 3cm and then another triangle whose sides are $\frac{2}{5}$ times the corresponding sides of the isosceles triangle.
- 9. Construct a triangle with sides 3.5cm, 4cm & 5cm and then another triangle whose sides are $\frac{3}{5}$ of the corresponding sides of the first triangle.
- 10. Construct a triangle with sides 3cm, 4cm & 6cm and then another triangle whose sides are $\frac{7}{4}$ of the corresponding sides of the first triangle.
- 11. Construct a right angled triangle with sides 5cm & 6cm and then another triangle whose sides are $2\frac{1}{2}$ of the corresponding sides of the first triangle.

14. TRIANGLES: Theorems.

1. Basic proportionality theorem(B.P.T) or Thales Theorem:**-

"If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio".

Let **ABC** be the triangle. The line l parallel to BC intersect AB at D and AC at E. **To prove:** $\frac{DB}{AD} = \frac{CB}{AE}$ Join **BE**,**CD** Draw EF_AB, DG_CA Since $\mathbf{EF} \perp \mathbf{AB}$. EF is the height of triangles ADE and DBE Area of $\triangle ADE = \frac{1}{2} \times base \times height = \frac{1}{2} \times AD \times EF$ Area of $\triangle DBE = \frac{1}{2} \times DB \times EF$ $\frac{areaof \Delta DBE}{areaof \Delta ADE} = \frac{1/2 \times DB \times EF}{1/2 \times AD \times EF} \times = \frac{DB}{AD}$(1) Similarly, $\frac{areaof\Delta DBE}{areaof\Delta ADE} = \frac{1/2 \times CB \times EF}{1/2xAE \times EF} \times = \frac{CB}{AE}$(2) But **ΔDBE** and **ΔDCE** are the same base **DE** and between the same parallel straight line BC and DE. Area of ΔDBE = area of ΔDCE(3) From (1), (2) and (3), we have DB CB AD AE Hence proved.

2. <u>Pythagoras theorem:</u>

RASANTH KUMAR ROYAI

In a right angles triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.

3. AA similarity Criterion theorem:

"If two triangles are equiangular then their corresponding sides are in proportion"

Data: In \triangle ABC and \triangle DEF (i) $\angle BAC = \angle EDF$ (ii) $\angle ABC = \angle DEF$ **To prove:** $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$ **Construction:** Mark points 'G' and 'H' on AB and AC such that (i) AG = DE and (ii) AH = DF Join G and H **Proof:** Statement Reason Compare Δ AGH and Δ DEF. AG = DE[Construction] $\angle GAH = \angle EDF$ [Data] [Construction] AH = DF $\therefore \Delta AGH \cong \Delta DEF$ [SAS] [CPCT] $\therefore \angle AGH = \angle DEF$

But $\angle ABC = \angle DEF$ [Data] $\Rightarrow \angle AGH = \angle ABC$ [Axiom - 1]

 \therefore GH || BC [If corresponding angles are equal then lines are ||.]

 $\therefore \text{ In } \Delta \text{ABC} \frac{AB}{AG} = \frac{BC}{GH} = \frac{CA}{HA}$ Hence $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$

• [third corollary to Thales theorem]

4. Area Of Similar Triangle:

Prove that "The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides".

$$A$$

$$B$$

$$M$$
We need to prove that
$$\frac{ar(ABC)}{ar(PQR)} = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{BC}{QR}\right)^2 = \left(\frac{CA}{RP}\right)^2$$
Now, ar(ABC) = $\frac{1}{2} \times BC \times AM$
and ar(PQR) = $\frac{1}{2} \times QR \times PN$
So, $\frac{ar(ABC)}{ar(PQR)} = \frac{\frac{1}{2} \times BC \times AM}{\frac{1}{2} \times QR \times PN}$... (1)
Now, in $\triangle ABM$ and $\triangle PQN$,
 $\angle B = \angle Q$ (As $\triangle ABC \sim \triangle PQR$)
and $\angle M = \angle N$ (Each is 90°)
So, $\triangle ABM \sim \triangle PQN$ (AA similarity criterion)
Therefore, $\frac{AM}{PN} = \frac{AB}{PQ}$... (2)
Also, $\triangle ABC \sim \triangle PQR$ (Given)
So, $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{CA}{RP}$... (3)
Therefore, $\frac{ar(ABC)}{ar(PQR)} = \frac{AB}{PQ} \times \frac{AM}{PN}$
[From (1) & (3)]
 $= \frac{AB}{PQ} \times \frac{AB}{PQ}$ [From (2)]
 $= \left(\frac{AB}{PQ}\right)^2$
Now using (3) we get:
 $\frac{ar(ABC)}{ar(PQR)} = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{BC}{QR}\right)^2 = \left(\frac{CA}{RP}\right)^2$

PRASANTH KUMAR ROYAL'S

INTRODUCTION TO TRIGONOMETRY

TRIGONOMETRIC FUNCTIONS

Si No	Function	Description	Ratios
1	Sin θ	Opp/ _{Hyp}	AB/AC
2	Cos θ	Adj/ _{Hyp}	
3	Tan θ	Opp/ _{Adj}	
4	Cot θ	Adj/ _{Opp}	
5	Sec θ	Hyp/ _{Adj}	
6	Cosec θ	^{Hyp} / _{Opp}	

INVERSE TRIGONOMETRIC FUNCTIONS

$\sin \theta = 1/_{\cos ec\theta}$	$\cos \theta = \frac{1}{Sec\theta}$	Tan $\theta = 1/_{Cot\theta}$
Cosec $\theta = \frac{1}{\sin\theta}$	Sec $\theta = 1/_{\cos\theta}$	$Cot \ \theta = {}^{1}\!/_{Tan\theta}$

1. If $7\cos\theta = 4$, Find the Value of other Trigonometric Functions

A	Acc to P T $AC^2 = AB^2 + BC^2$ $AB^2 = AC^2 - BC^2$	$\mathbf{Cos}\boldsymbol{\Theta} = {}^{\mathrm{Adj}}/{}_{\mathrm{Hyp}} = {}^{4}/{}_{7}$	$\sin\theta = \frac{Opp}{Hyp} = \frac{\sqrt{23}}{7}$	Tan $\theta = \frac{Opp}{Adj} = \frac{\sqrt{23}}{4}$
B C	$= 7^{2} - 4^{2}$ = 49 - 16 = 23 AB = $\sqrt{23}$	$Cot\theta = Adj/_{Opp} = 4/_{\sqrt{23}}$	Sec $\theta = \frac{Hyp}{Adj} = \frac{7}{4}$	$Cosec\theta = \frac{Hyp}{Opp} = \frac{7}{\sqrt{23}}$

For Practice : 1. If 5CosA=4 Write all other Trigonometric ratios.2. If 3CosecA=7, Write all other Trigonometric ratios.

Values of Trigonometric Functions for Different angles

θ	0°	30°	45°	60°	90°
Sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
Cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
Tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	ND
Cot	ND	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0
Sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	ND
Cosec	ND	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1

TRIGNOMETRIC FUNCTIONS OF COMPLEMENTARY ANGLES

$\sin(90-\theta) = \cos\theta$	$\operatorname{Cosec}(90-\theta) = \operatorname{Sec}\theta$	$Tan (90-\theta) = Cot\theta$
$\cos(90-\theta) = \sin\theta$	Sec $(90-\theta) = \text{Cosec}\theta$	$Cot (90-\theta) = Tan\theta$

Solve the following

1. Find the value of $\frac{5\cos^{2}60^{\circ} + 4\sec^{2}30^{\circ} - \tan^{2}45^{\circ}}{\sin^{2}30^{\circ} + \cos^{2}30^{\circ}} = \frac{5\times(\frac{1}{2})^{2} + 4(\frac{2}{J_{3}})^{2} - 1}{(\frac{1}{2})^{2} + (\frac{5}{3})^{2}} = \frac{5\times(\frac{1}{4}) + 4(\frac{4}{3}) - 1}{\frac{1}{4} + \frac{3}{4}} = \frac{5}{4} + \frac{16}{3} - 1}{1} = \frac{5}{4} + \frac{16}{3} - 1 = \frac{79}{12} - 1 = \frac{67}{12}$ For Practice : a. $6\sin^{2}30^{\circ} + 5\cos^{2}60^{\circ} = ?$ b. $\sin60^{\circ} + \sec45^{\circ} + \cos60^{\circ} = ?$ c. $\frac{Tan60^{\circ} + Tan30^{\circ}}{1 + Tan60^{\circ}Tan30^{\circ}} = ?$

2. Evaluate :
$$\frac{\tan 65^{\circ}}{\cot 25^{\circ}} = ?$$

3. P T : $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ} = 1$
 $= \tan 48^{\circ} \times \tan 23^{\circ} \times \frac{1}{\cot 42^{\circ}} \times \frac{1}{\cot 67^{\circ}}$
 $= \frac{\tan(90-25^{\circ})}{\cot 25^{\circ}} = \frac{\cot 25^{\circ}}{\cot 25^{\circ}} = 1$
 $= \tan 48^{\circ} \times \tan 23^{\circ} \times \frac{1}{\tan 48^{\circ}} \times \frac{1}{\tan 23^{\circ}} = 1$
4. $\frac{\sin 72^{\circ}}{\cos 12^{\circ}} = \frac{\sin 72^{\circ}}{\cos (90 - 72)^{\circ}} = \frac{\sin 72^{\circ}}{\sin 72^{\circ}} = 1$
5. If sec 4A = cosec (A - 20^{\circ}), where 4A is an acute angle, find the value of A.
 $\sec 4A = \csc (A - 20)$
 $\csc (90 - 4A) = \csc (A - 20)$
 $90 - 4A = A - 20$
 $90 + 20 = A + 4A$
 $110 = 5A$
 $A = \frac{110}{5} = 22^{\circ}$

For Practice : a. P. T. Tan 48° . Tan 42° . Tan 42° . Tan $48^{\circ} = 1$

b. $\frac{\sin 36^{\circ}}{\cos 54^{\circ}} = ?$

APPLICATION OF TRIGONOMETRY

Two poles of equal heights are standing opposite each other on either side of the road, which is 80m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30°, respectively. Find the height of the poles and the distances of the point from the poles.

in Right angle
$$\triangle ABC \mid \underline{C} = 60^{\circ}$$
.
 $\tan 60^{\circ} = \frac{AB}{AC}$
 $\sqrt{3} = \frac{h}{x}$
 $h = \sqrt{3}x \rightarrow (1)$
Again in right angle $\triangle PQC$, $\mid \underline{C} = 30^{\circ}$.
 $\tan 30^{\circ} = \frac{PQ}{PC} = \frac{h}{(80 - x)}$
 $\frac{1}{\sqrt{3}} = \frac{h}{(80 - x)}$
 $\frac{1}{\sqrt{3}} = \frac{h}{(80 - x)}$
 $h = \frac{(80 - x)}{\sqrt{3}} \rightarrow (2)$
 $h = \frac{(80 - x)}{\sqrt{3}} \rightarrow (2)$
 $A = \frac{h}{\sqrt{3}} \rightarrow (2)$
 $A = \frac{h}{\sqrt$

2. From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower.

Let AB be the height of tower

AB = (h + 7) m and PQ be the height of building

In Right angle \triangle PQB $|B| = 45^{\circ}$

$$\tan 45^\circ = \frac{PQ}{BQ}$$
$$1 = \frac{PQ}{BQ} \quad [PQ = 7m]$$

 $\sqrt{3} = \frac{h}{PC}$ $h = PC\sqrt{3} (PC = BQ = 7m)$ $h = 7\sqrt{3} m$ So, height of tower = AB = 7 + h = 7 + 7\sqrt{3}

BQ = 7 m

Again In Right angle $\triangle APC \mid \underline{P} = 60^{\circ}$

$$\tan 60^\circ = \frac{AC}{PC}$$

3. As observed from the top of a 75 m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships.

4. From a point on the ground 40 m away from the foot of a tower, the angle of elevation of the top of a tower is 30°, the angle of elevation of the top of water tank on top of the tower is 45°. Find (i) height of the tower (ii) depth of the tank

5. A tree is broken over by the wind forms a right angled triangle with the ground. IF the broken parts makes an angle of 60°, with the ground and the top of the tree is now 20 m from its base, how tall was the tree.

6. There is a small island in the middle of a 100 m wide river and a tall tree stands on the island . P and Q are points directly opposite to each other on two banks and in the line with the tree . If the angle of elevation of the top of the tree from P and Q are respectively 30° and 45° find the height of the tree

Let OA be the tree of height h metre. In triangle POA and QOA, we have $\tan 30^{\circ} = \frac{OA}{OP}$ and $\tan 45^{\circ} = \frac{OA}{OQ}$ $\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{OP}$ and $1 = \frac{h}{OQ}$ $\Rightarrow OP = \sqrt{3} h \text{ and } OQ = h$ $\Rightarrow OP + OQ = \sqrt{3} h + h$ $\Rightarrow PQ = (\sqrt{3} + 1) h$

 $\Rightarrow 100 = (\sqrt{3} + 1) h [:: PQ = 100 m]$ $\Rightarrow h = \frac{100}{\sqrt{3} + 1} m$ $\Rightarrow h = \frac{100 (\sqrt{3} + 1)}{2} m$ $\Rightarrow h = 50(1.732 - 1) m = 36.6 m$ Hence, the height of the tree is 36.6 m.

PRACTICE PAPER

- 1. The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 50 m high, find the height of the building.
- 2. Two poles of equal heights are standing opposite each other on either side of the road, which is 80m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30°, respectively. Find the height of the poles and the distances of the point from the poles.
- 3. From a point 20m away from the foot of a tower, the angle of elevation of top of the tower is 30° , Find the height of the tower.
- 4. An electric pole is 10m high. A steel wire tied to the top of the pole is affixed at a point on the ground to keep the pole upright. If the wire makes an angle of 45° with the horizontal through the foot of the pool, find the length of the wire.

SURFACE AREA & VOLUME

	C S A	T S A	VOLUME
Cylinder	$2\pi rh \qquad 2\pi r(r+h)$		$\pi r^2 h$
Cone	πrl	πr(r+l)	$^{1}/_{3}\pi r^{2}h$
Sphere		$^{4}/_{3} \pi r^{3}$	
Hemisphere	$2 \pi r^2 \qquad \qquad 3 \pi r^2$		$^{2}/_{3} \pi r^{3}$
Frustrum of Cone	$\pi(\mathbf{r}_1 + \mathbf{r}_2)\mathbf{l}$ $\pi(\mathbf{r}_1 + \mathbf{r}_2)\mathbf{l} + \pi(\mathbf{r}_1^2 + \mathbf{r}_2^2)$		$^{1}/_{3}\pi(r_{1}^{2}+r_{2}^{2}+r_{1}r_{2})$
Cube	Surfa	a ³	
Cuboid	Surface Ar	rea = 2(lb + bh + hl)	$\mathbf{l} \times \mathbf{b} \times \mathbf{h}$

1) What is the volume of a Cylinder having the area of its circular base 154Sq cm and height 10cm.

Ans : $\pi r^2 = 154$ Sq cm h = 10cm

 $V = \pi r^2 h$

 $= 154 \times 10 = 1540 \text{ cm}^3$

2) What is the volume of a Cylinder having the area of its circular base 22Sq cm and height 10cm.

Ans : $\pi r^2 = 22$ Sq cm h = 10cm

 $V = \pi r^2 h = 22 \times 10$

 $= 220 \text{cm}^3$

3. The height and areas of circular bases of a cylinder and a cone are equal. If Volume of cylinder if 360cm³, What would be the volume of Cone

Ans : Vol of Cone = $\frac{1}{3}$ × Vol of Cylinder

$$= \frac{1}{3} \times 360$$

= 120cm³

4. What is the formula to findout the Total surface area of a frustrum of cone?

Ans : A = $\pi(r_1 + r_2)l + \pi(r_1^2 + r_2^2)$

.

5. Find the volume of a Cone whose height is 4cm and the diameter of its base is 21cm

Ans : h = 4cm

$$r = \frac{d}{2} = \frac{21}{2}$$

$$V = \frac{1}{3} \pi r^{2}h$$

$$= \frac{1}{3} \frac{x^{22}}{7} \frac{x}{21/2} (\frac{21}{2})^{2} x 4$$

$$= \frac{1}{3} \frac{x^{22}}{7} \frac{x^{22}}{7} \frac{x^{21}}{2} x 4 = 22 \times 21 = 462 \text{cm}^{3}$$

6. Find the Curved surface area, Total surface area and Volume of a cylinder of height 7cm and radius of base 5cm

h = 7cmr = 5cmAns : $CSA = 2\pi rh = 2 \times \frac{22}{7} \times 5 \times 7 = 2 \times 22 \times 5 = 220 cm^2$ $TSA = 2\pi r(r + h) = 2 \times \frac{22}{7} \times 5 (5 + 7) = 2 \times \frac{22}{7} \times 5 \times 12 = 2 \times 3.14 \times 60 = 376.8 cm^{2}$ $Vol = \pi r^2 h = \frac{22}{7} \times 5 \times 5 \times 7 = 22 \times 25 = 550 cm^3$ 7. Find the CSA and TSA of a Cone whose Slant height is 14cm and base radius 5cm. l = 14cm Ans : r = 5cm $CSA = \pi rl = \frac{22}{7} \times 5 \times 14 = 22 \times 5 \times 2 = 220 cm^2$ TSA = $\pi r(r+1) = \frac{22}{7} \times 5(5+14) = \frac{22}{7} \times 5 \times 19 = 3.14 \times 95 = 298.3 cm^2$ 8. Find the surface area and Volume of a Sphere of diameter 28cm Ans : d = 28cmr = 14cmSurface area = $4\pi r^2 = 4 \times \frac{22}{7} \times 14 \times 14 = 4 \times 22 \times 2 \times 14 = 2464 cm^2$ Volume = $\frac{4}{3} \pi r^3 = \frac{4}{3} \times \frac{22}{7} \times 14 \times 14 \times 14 = 1.33 \times 22 \times 2 \times 196 = 11469.92 \text{cm}^3$ 9. Find the TSA of a Frustrum of Cone of Slant height 10cm whose radii are 14cm and 7cm. Ans : l = 10cm $r_1 = 14cm$ $r_2 = 7cm$ $CSA = \pi(r_1 + r_2)l = \frac{22}{7}(14 + 7)10 = \frac{22}{7} \times 21 \times 10 = 22 \times 3 \times 10 = 660 \text{ cm}^2$ $TSA = A = \pi(r_1 + r_2)l + \pi(r_1^2 + r_2^2)$ $\frac{22}{7}(14+7)10 + \frac{22}{7}(14^2+7^2)$

$$= \frac{22}{7} (14 + 7)10 + \frac{22}{7} (14^{2} - 2)^{2} = \frac{660}{7} + \frac{22}{7} (196 + 49)$$
$$= \frac{660}{77} + \frac{22}{7} (245)$$
$$= \frac{660}{77} = \frac{1430}{7} \text{ cm}^{2}$$

STATISTICS

1. Find the Mean, Median & Mode of the following data. 11-20 21-30 31-40 41-50 CI 1-10 51-60 **61-70** 5 7 2 f 2 5 3 6 CI X f fX $^{\rm N}/_2 = ^{30}/_2 = 15$ CI f fc 2 5 0-10 10 2 2 0-10 Median = 1 + $\frac{N_{2} - f_{c}}{f_{m}} \times h$ 10-20 5 15 75 7 10-20 5 7 25 175 20-30 20-30 7 14 $= 30 + \frac{15 - 14}{5} \times 10$ 175 30-40 5 35 19> 30-40 5 40-50 6 45 270 40-50 25 6 $= 30 + \frac{1}{5} \times 10$ 50-60 3 55 165 3 50-60 28 **60-70** 2 65 130 = 30 + 2**60-70** 2 30 N = 30 $\Sigma f X = 1000$ N = 30 Median = 32Mean = $\Sigma fX/N$ = $\frac{1000}{30} = 33.3$ $Mode = l + \frac{f_1 - f_0}{2f_1 - f_2 - f_0} \times h$ CI f 0-10 2 10-20 5 $\rightarrow f_0$ $=20+\frac{7-5}{2\cdot7-5-5}\times10$ 20-30 7 \rightarrow f₁ 30-40 5 $-f_2$ $= 20 + \frac{2}{4} \times 10 = 20 + \frac{20}{4} = 20 + 5 = 25$ 40-50 6 50-60 3 2 **60-70** data.

2. Fin	d the Me	ean, Med	lian & M	lode of t	he follow	/ing
CI	25-35	35-45	45-55	55-65	65-75	

10

f 7	7	8	10
СІ	f	X	fX
25-35	7	30	210
35-45	8	40	320
5-55	16	50	800
55-65	10	60	600
5-75	9	70	630
N = 5	0	$\Sigma f X =$	= 2560

Mean = $\Sigma fX/_N$ = $\frac{2560}{50}$ = 51.2

CI	f	f _c
25-35	7	7
35-45	8	15
45-55	16	31
55-65	10	41
65-75	9	50
N = 50		

$$N/2 = \frac{50}{2} = 25$$

Median = 1 + $\frac{N/2 - f_c}{f_m} \times h$

$$= 45 + \frac{25 - 15}{16} \times 10$$

= 45 + ¹⁰/₁₆ × 10
= 45 + ¹⁰⁰/₁₆
Median = 45 + 6.25 = 51.25

СІ	f	
25-35	7	Mode = $\mathbf{l} + \frac{\mathbf{f_1} - \mathbf{f_0}}{2\mathbf{f_1} - \mathbf{f_0}} \times \mathbf{h} = 45 + \frac{16 - 8}{16 - 10} \times 10 = 45 + \frac{8}{14} \times 10$
35-45	8 -	f_0 $2I_1 - I_2 - I_0$ $2 \cdot 10 - 10 - 8$
45-55	16 -	f_1 $f_5 = 80/(1 + 67) = 607$
55-65	10 -	$= 45 + \frac{60}{14} = 45 + 5.7 = 50.7$
65-75	9	

For Practice :	Find th	e Mean,	Median	& Mode	of the fo	ollowing	data.
			(10				

f 3 5 4 2 6	CI	1-5	6-10	11-15	16-20	21-25
	f	3	5	4	2	6

CI	16-20	21-25	26-30	31-35	36-40
f	5	6	8	4	7

CI	100-120	120-140	140-160	160-180	180-200
f	8	9	7	5	6

Drawing an O-give Curve

3. Draw a less than type O-give for the following data.

CI	f	Less than fc
0-10	2	2
10-20	5	7
20-30	7	14
30-40	5	19
40-50	6	25
50-60	3	28
60-70	2	30

4. Draw a More than type O-give for the following data

CI	f	More than fc
0-10	2	30
10-20	5	28
20-30	7	23
30-40	5	16
40-50	6	11
50-60	3	5
60-70	2	2

7. If the mean of 4, x, 6, 9 is 6, find the value of x.

 $Mean = \frac{Sum of all terms}{Number of terms} = \frac{4 + x + 6 + 9}{4}$

$$6 = \frac{19 + x}{4} \longrightarrow 24 = 19 + x \longrightarrow x = 24 - 19 \longrightarrow x = 6$$

8. Write the Modal Class in the following data. 9. Write the Median in 2, 5, 9, 7, 4, 11, 1

CI	f
0-10	2
10-20	5
20-30	7
30-40	5
40-50	6
50-60	3
60-70	2

as 7 is the highest frequency in the data, 20-30 is the modal class 1, 2, 4, 5, 7, 9, 11 here middle term is 5. Hence 5 is Median

Arithmetic Progression

1. General form of A.P is

 $a, a + d, a + 2d, a + 3d \dots$

2. n^{th} term of an A.P is

 $a_n = a + (n - 1)d$

3. n^{th} term from last of an A.P is

$$l - (n - 1)d$$

4. Common difference of an A.P is

$$d = a_2 - a_1$$
 (or) $d = a_3 - a_2$

5. The sum of first 'n' positive integer

$$S_n = \frac{n(n+1)}{2}$$

6. The sum of 'n' odd natural numbers

$$S_n = n^2$$

7. The sum of 'n' even natural numbers

$$S_n = n(n+1)$$

8. Sum of first 'n' terms of an A.P is

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

9. Sum of AP, if first and last terms are given

$$S_n = \frac{n}{2}[a + a_n]$$
 (or) $S_n = \frac{n}{2}[a + l]$

10. In any progression

$$S_n - S_{n-1} = a_n$$

Soln: $a_n = 2n - 5$ $a_{10} = 2(10) - 5$ $a_{10} = 20 - 5$ $\therefore a_{10} = 15$

Drill work

1. If the nth term of an AP $a_n = 3n - 2$. Find the 9th term.

2. If the nth term of an AP $a_n = 24 - 3n$. Find the 2th term.

3. If the nth term of an AP $a_n = 5n + 3$. Find the 3th term.

2. Find the 10th term of AP 2, 7, 12, using formula.

1. Find 10^{th} term of the sequence $a_n = 2n - 5$

Soln: a = 2, d = 5, n = 10w.k.t $a_n = a + (n - 1)d$ $a_{10} = 2 + (10 - 1)5$ $a_{10} = 2 + 9 \times 5$ $a_{10} = 2 + 45$ $\therefore a_{10} = 47$ Alternate Method $a_{10} = a + 9d$ $a_{10} = 2 + 9 \times 5$ $a_{10} = 2 + 45$ $\therefore a_{10} = 47$

Drill work

1. In an AP 21, 18, 15, \dots find 35^{th} term.

2. In an AP 3, 8, 13, find 12th term.

3. In an AP 10, 7, 4, find 18th term.

4.

3. Find the sum of 2+5+8+..... to 20 terms

Soln:
$$a = 2, d = 3, n = 20$$
 and $S_n = ?$
w.k.t $S_n = \frac{n}{2}[2a + (n - 1)d]$
 $S_{20} = \frac{20}{2}[2 \times 2 + (20 - 1) \times 3]$
 $S_{20} = 10[4 + 19 \times 3]$
 $S_{20} = 10[4 + 57]$
 $S_{20} = 10 \times 61$
 $\therefore S_{20} = 610$

Drill work

- 1. Find the sum of first 20 terms of an AP 3, 7, 11, 15,
- 2. Find the sum of first 25 terms of an AP 5, 10, 15, 20,
- 3. Find the sum of first 18 terms of an AP 2, 7, 12,
- 4. Find the sum of: 1+5+9+ up to 25 terms.
- 5. Find the sum terms of an AP 2, 7, 12,