

DIRECTORATE OF MINORITIES

MINORITIES WELFARE DEPARTMENT

MATHEMATICS
S.S.L.C Super Notes: - 2020-21
-: MENTOR :-

MAHIBOOB SAB KARATAGI DIRECTOR DIRECTORATE OF MINORITIES GOVT OF KARNATAKA
-: CO-ORDINATOR:-

KANTHARAJU K M.A, M.ED, M.PHIL NODAL OFFICER, STATE LEVEL QUESTION PAPERS DESIGN COMMMITTEE MINORITY WELFARE DEPARTMENT PRINCIPAL, MIMDRS, SIRA

Index

$\begin{gathered} \hline \mathrm{Sl} \\ \text { No. } \end{gathered}$	Marks to be expected	Name of the chapter/content	Page no.	Marks to be allotted
1	1 mark	Surface area and volumes- Learn All formulae	2-3	1
2	2 marks	Arithmetic progression - finding terms	4-5	2
3		Arithmetic progression sum of nth terms	6-7	2
4		Coordinate geometry- Problems on distance formula	8-9	2
5		Quadratic equations- solving quadratic equation by formula method	10-11	2
6		Pair of linear equations in two variables- solve x \& y	12-13	2
7		Constructions - dividing the line segment	14-15	2
8	3 marks	Constructions - Tangent construction	16-17	3
9		Statistics - Mean, Median \& Mode	18-21	3
10		Statistics - Ogive graph	22-25	3
11		Circle- theorem	26	3
12	4 marks	Pair of linear equations in two variables- graphical solution(x \& y)	27-30	4
13		Constructions - construction of similar triangles	31-33	4
14	4 or 5 marks	Triangles - theorem	34-37	5
Total				38

1. Surface area and volume: All Formulae

Cuboid:

Lateral surface area $=L S A=2 h(l+b)$
Total surface area $=\mathrm{TSA}=2(\mathrm{lb}+\mathrm{bh}+\mathrm{lh})$
Volume = lbh.
Area of four walls of a room $=2 h(l+b)$
Diagonals of cuboid $=\sqrt{l^{2}+b^{2}+h^{2}}$

Cube :

Lateral surface area $=\mathrm{LSA}=4 \mathrm{a}^{2}$
Total surface area $=T S A=6 \mathrm{a}^{2}$
Volume $=a^{3}$ (a is edge of cube)
Diagonal of cube $=\sqrt{3} \mathrm{a}$.

Cylinder :

Right circular cylinder
LSA (or) CSA $=2 \pi r h$
TSA $=2 \pi r h+2 \pi r^{2}$ (or)
TSA $=2 \pi r(r+h)$
Volume $=\pi r^{2} h$.

Hollow cylinder.

Thickness of cylinder $=\mathrm{R}-\mathrm{r}$.
Area of cross section $=\pi\left(R^{2}-r^{2}\right)$
External CSA $=2 \pi R h$
Internal CSA $=2 \pi r h$.
TSA $=$ External CSA + Internal CSA +area of two ends.
$=2 \pi R h+2 \pi r h+2 \pi\left(R^{2}-r^{2}\right)$
Volume $=\pi\left(R^{2}-r^{2}\right) h$.
Right circular cone :
CSA (or) LSA $=\pi r$ l
TSA $=\pi r(r+1)$
Volume $=\frac{1}{3} \pi \mathrm{r} 2 \mathrm{~h}$
Slant height $=\sqrt{h^{2}+r^{2}}$.

Frustum of a cone :

Slant height $=\sqrt{h^{2}+(R-r)^{2}}$. .
LSA $=\pi(R+r) l$.
TSA $=\pi\left[R^{2}+r^{2}+(R+r) l\right]$
Volume $=\frac{1}{3} \pi h\left[R^{2}+r^{2}+\mathrm{Rr}\right]$.
Sphere:

$$
\operatorname{CSA}=4 \pi r^{2}
$$

$\mathrm{TSA}=4 \pi \mathrm{r}^{2}$
Volume $=\frac{4}{3} \pi r^{3}$.
Hemisphere:
$\operatorname{CSA}=2 \pi r^{2}$
TSA $=3 \pi \mathrm{r}^{2}$
Volume $=\frac{2}{3} \pi r^{3}$.

2. Arithmetic Progression: nth terms of A.P

$$
a_{n}=a+(n-1) d
$$

1. Find the $20^{\text {th }}$ term from the last term of the AP: $3,8,13, \ldots, 253$.

Solution: We have, last term =1=253
And, common difference $d=2^{\text {nd }}$ term $-1^{\text {st }}$ term $=8-3=5$
Therefore, $20^{\text {th }}$ term from end $=1-(20-1) \times \mathrm{d}=253-19 \times 5=253-95$ $=158$.
2. Find the number of natural numbers between 101 and 999 which are divisible by both 2 and 5 .

Solution:
Natural numbers between 101 and 999 divisible by both 2 and 5 are 110, 120, ... 990.
so, $a_{1}=110, d=10, a_{n}=990$
We know, $a_{n}=a_{1}+(n-1) d$
$990=110+(\mathrm{n}-1) 10$
($\mathrm{n}-1$) $=990-11010$
$\Rightarrow \mathrm{n}=88+1=89$.
3. Find how many integers between 200 and 500 are divisible by 8 .

Solution:
AP formed is $208,216,224, \ldots, 496$
Here, $a_{n}=496, a=208, d=8$
$a_{n}=a+(n-1) d$
$\Rightarrow 208+(\mathrm{n}-1) \times 8=496$
$\Rightarrow 8(\mathrm{n}-1)=288$
$\Rightarrow \mathrm{n}-1=36$
$\Rightarrow \mathrm{n}=37$.
4. How many terms of the AP $18,16,14, \ldots$. be taken so that their sum is zero?

Solution:
Here, $\mathrm{a}=18, \mathrm{~d}=-2, \mathrm{~s}_{\mathrm{n}}=0$
Therefore, $n 2[36+(n-1)(-2)]=0$
$\Rightarrow \mathrm{n}(36-2 \mathrm{n}+2)=0$
$\Rightarrow \mathrm{n}(38-2 \mathrm{n})=0$
$\Rightarrow \mathrm{n}=19$.
5. Which term of the AP: $3,8,13,18, \ldots$, is 78 ?

Solution:
Let a_{n} be the required term and we have given AP
$3,8,13,18, \ldots .$.
Here, $a=3, d=8-3=5$ and $\mathrm{a}_{\mathrm{n}}=78$

Now, $\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\Rightarrow 78=3+(\mathrm{n}-1) 5$
$\Rightarrow 78-3=(\mathrm{n}-1) \times 5$
$\Rightarrow 75=(\mathrm{n}-1) \times 5$
$\Rightarrow 755=\mathrm{n}-1$
$\Rightarrow 15=\mathrm{n}-1$
$\Rightarrow \mathrm{n}=15+1=16$
Hence, $16^{\text {th }}$ term of given AP is 78 .

Practice:

6. Find the 9th term from the end (towards the first term) of the A.P. 5, 9,13,185.(ans: 153).
7. How many two-digit numbers are divisible by 3?. (ans: 30)
8. Find the middle term of the A.P. $6,13,20, . ., 216$. (Ans;111)
9. Find the 25 th term of an arithmetic progression $2,6,10,14, \ldots \ldots$. (ans: 98)
10. Find the 10 th term of arithmetic progression $2,7,12$....... using the formula.(ans: 47).

3. Arithmetic Progression: Sum of nth terms.

$$
\mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \& \mathrm{~S}_{\mathrm{n}}=\frac{n}{2}[\mathrm{a}+\mathrm{l}]
$$

1. Find the sum of the A.P: $1,3,5$, 199.

Solution: $\mathrm{a}=1, \mathrm{~d}=2$ and last term $\mathrm{l}=199$

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\
& \Rightarrow 199=1+(\mathrm{n}-1) \times 2 \\
& \Rightarrow 2 \mathrm{n}=200 \\
& \mathrm{n}=100 \\
& \begin{aligned}
\therefore \mathrm{Sum} & =\frac{n}{2}[\mathrm{a}+1] \\
& =\frac{100}{2}[1+199] \\
& =10000
\end{aligned}
\end{aligned}
$$

2. Find the sum of the series $51+50+49+--------+21$.

Solution: $\mathrm{a}=51, \mathrm{~d}=-1$ and last term $\mathrm{l}=21$
$\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$\Rightarrow 21=51+(\mathrm{n}-1) \times-1$
21 $=51+1$-n
$\Rightarrow \mathrm{n}=52-21$
$\mathrm{n}=31$
\therefore sum $=\frac{n}{2}[a+1]$
$=\frac{31}{2}[51+21]=\frac{31}{2}[72]$
$=1116$
3. How many terms of the AP $18,16,14, \ldots$ be taken so that their sum is zero?
Solution:
Here, $\mathrm{a}=18, \mathrm{~d}=-2, \mathrm{~s}_{\mathrm{n}}=0$
Therefore, $\frac{n}{2}[36+(\mathrm{n}-1)(-2)]=0$
$\Rightarrow \mathrm{n}(36-2 \mathrm{n}+2)=0$
$\Rightarrow \mathrm{n}(38-2 \mathrm{n})=0$
$\Rightarrow \mathrm{n}=19$
4. Find the sum of first 22 terms of an AP in which $\boldsymbol{d}=7$ and $22^{\text {nd }}$ term is 149 .
Solution: Given,
Common difference, $\mathrm{d}=7$
$22^{\text {nd }}$ term, $\mathrm{a}_{22}=149$
To find: Sum of first 22 term, S_{22}
By the formula of nth term, we know;

$$
a_{n}=a+(n-1) d
$$

$\mathrm{a}_{22}=\mathrm{a}+(22-1) \mathrm{d}$
$149=a+21 \times 7$
$149=a+147$
a = 2 = First term
Sum of nth term is given by the formula;
$\mathrm{S}_{\mathrm{n}}=\mathrm{n} / 2\left(\mathrm{a}+\mathrm{a}_{\mathrm{n}}\right)$
$=22 / 2(2+149)$
$=11 \times 151$
$=1661$
5. Find the sum of first 20 natural numbers which are divisible by 4.

Solution: The A.P which are divisible by 4 is $4,8,12, \ldots \ldots$
Here we have to find $a_{n} . a=4, d=4$

$$
\begin{gathered}
\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1 \mathrm{~d}) \\
\mathrm{a}_{20}=4+19 \mathrm{x} 4 \\
\mathrm{a}_{20}=4+76 \\
\mathrm{a}_{20}=80 . \\
\therefore \text { sum }=\frac{n}{2}[\mathrm{a}+1] \\
=\frac{20}{2}[4+80] \\
=10 \mathrm{x} 84 \\
=840 .
\end{gathered}
$$

Practice:

6. Find the sum of first 50 natural numbers which are divisible by 5 .
7. Find the sum of : $1+5+9+----------$ up to 25 terms.
8. Find the sum of first 30 terms of the A,P $2,6,10, \ldots$.
9. How many terms of the A.P. $27,24,21, \ldots$ should be taken so that their sum is zero?
10. Find the sum of $2+5+8+\ldots$. to 20 terms using the formula.

4. Coordinate geometry: Problems on distance formula.

 Distance formula $=\sqrt{(x 2-x 1)^{2}+(y 2-y 1)^{2}}$.1. Find the distance between the two points $(2,5) \&(7,6)$.

Solution: here $\mathrm{x}_{1}=2, \mathrm{x}_{2}=7, \mathrm{y}_{1}=5 \& \mathrm{y}_{2}=6$. Put all the values in the given formula.

$$
\begin{aligned}
\mathrm{d} & =\sqrt{(\mathrm{x} 2-\mathrm{x} 1)^{2}+(\mathrm{y} 2-\mathrm{y} 1)^{2}} . \\
& =\sqrt{(7-2)^{2}+(6-5)^{2}} . \\
& =\sqrt{(5)^{2}+(1)^{2}} . \\
& =\sqrt{25+1} . \\
& =\sqrt{26} \text { sq.units }
\end{aligned}
$$

2. Prove that the points $(7,10),(-2,5)$ and $(3,-4)$ are the vertices of an isosceles right triangle.
Solution:
Let $\mathrm{A}(7,10), \mathrm{B}(-2,5), \mathrm{C}(3,-4)$ be the vertices of a triangle.

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{(-2-7)^{2}+(5-10)^{2}} \\
& =\sqrt{81+25}=\sqrt{106} \\
\mathrm{BC} & =\sqrt{(3+2)^{2}+(-4-5)^{2}}=\sqrt{25+81}=\sqrt{106} \\
\mathrm{AC} & =\sqrt{(3-7)^{2}+(-4-10)^{2}} \\
& =\sqrt{16+196}=\sqrt{212}
\end{aligned}
$$

$$
\begin{equation*}
A B=B C=\sqrt{106} \tag{i}
\end{equation*}
$$

$\therefore \quad \mathrm{ABC}$ is an isosceles \triangle.

$$
\begin{aligned}
A B^{2}+B C^{2} & =(\sqrt{106})^{2}+(\sqrt{106})^{2} \\
& =106+106=212=A C^{2}
\end{aligned}
$$

... [By converse of Pythagoras theorem
$\triangle A B C$ is an isosceles right angled triangle. ...(ii) From (i) \& (ii), Points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the vertices of an isosceles right triangle.
3. Find that value(s) of x for which the distance between the points $P(x, 4)$ and $Q(9,10)$ is 10 units. (2011D)
Solution:
$P Q=10$...Given
$\mathrm{PQ}^{2}=10^{2}=100 \ldots$ [Squaring both sides
$(9-x)^{2}+(10-4)^{2}=100 \ldots$ (using distance formula
$(9-x)^{2}+36=100$
$(9-x)^{2}=100-36=64$
$(9-x)= \pm 8 \ldots$...TTaking square-root on both sides
$9-\mathrm{x}=8$ or $9-\mathrm{x}=-8$
$9-8=x$ or $9+8=x$
$\mathrm{x}=1$ or $\mathrm{x}=17$
4. Find the distance of the point $(-3,4)$ from the x-axis.

Solution:
B($-3,0$), A ($-3,4$)
Here $x_{1}=-3, x_{2}=-3, y_{1}=0 \& y_{2}=4$. Put all the values in the given formula.
$d=\sqrt{(x 2-x 1)^{2}+(y 2-y 1)^{2}}$.
$\mathrm{AB}=\sqrt{(-3+3)^{2}+(4-0)^{2}}$
$\mathrm{AB}=\sqrt{(4)^{2}}=4$
5. Find distance between the points $(0,5)$ and $(-5,0)$.

Solution:
Here $\mathrm{x}_{1}=0, \mathrm{y}_{1}=5, \mathrm{x}_{2}=-5$ and $\mathrm{y}_{2}=0$)

$$
\begin{aligned}
& \therefore \quad d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-5-0)^{2}+(0-5)^{2}} \\
& =\sqrt{25+25}=\sqrt{50}=5 \sqrt{2} \text { units }
\end{aligned}
$$

Practice:

6. Find the distance between the two points $(-4,0) \&(0,3)$.
7. Find the distance between the points $(-3,4)$ from its origin.
8. The point $\mathrm{A}(3, y)$ is equidistant from the points $\mathrm{P}(6,5)$ and $\mathrm{Q}(0,-3)$. Find the value of y.
9. Find the distance between the points $\mathrm{A}(3,6)$ and $\mathrm{B}(5,7)$ using distance formula.
10. Find the distance between the co-ordinate of the points $\mathrm{A}(2,3)$ and $B(10,-3)$.

5. Quadratic equations: Formula method.

$$
\text { Quadratic formula is } \mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

1. Solve by using quadratic formula: $\mathrm{x}^{2}-3 \mathrm{x}+1=0$.

Solution: $a=1, b=-3, c=1$
Quadratic formula is $\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\begin{aligned}
\mathrm{x} & =\frac{-(-3) \pm \sqrt{(-3)^{2}-4 X 1 X 1}}{2 X 1} \\
\mathrm{x} & =\frac{3 \pm \sqrt{9-4}}{2 X 1} \\
\mathrm{x} & =\frac{3 \pm \sqrt{5}}{2} \\
\mathrm{x} & =\frac{3+\sqrt{5}}{2} \text { or } \mathrm{x}=\frac{3-\sqrt{5}}{2}
\end{aligned}
$$

2. Solve the quadratic equation by using the formula: $x^{2}-6 x-4=0$

Solution: $a=1, b=-6, c=-4$
Quadratic formula is $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\begin{aligned}
& x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4 X 1 X-4}}{2 X 1} \\
& x=\frac{6 \pm \sqrt{36+16}}{2} \\
& x=\frac{6 \pm \sqrt{52}}{2}= \\
& x=\frac{6+\sqrt{52}}{2} \text { or } \mathrm{X}=\frac{6-\sqrt{52}}{2}
\end{aligned}
$$

3. By using the quadratic formula, find the solutions: $6 x^{2}-7 x-5=0$. Solution: $a=6, b=-7, c=-5$.
Quadratic formula is $\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\begin{aligned}
& x=\frac{-(-7) \pm \sqrt{(-7)^{2}-4 X 6 X-5}}{2 X 6} \\
& x=\frac{7 \pm \sqrt{49+120}}{12} \\
& x=\frac{7 \pm \sqrt{169}}{12}=\frac{7 \pm 13}{12} \\
& x=\frac{7+13}{12} \quad \text { or } \quad x=\frac{7-13}{12} \\
& x=\frac{20}{12} \quad \text { or } \quad x=\frac{-6}{12} \\
& x=\frac{5}{3} \quad \text { or } \quad x=-\frac{-1}{2}
\end{aligned}
$$

4. Solve the quadratic equation by formula: $2 x^{2}+11 x+5=0$. Solution: $a=2, b=11, c=5$.
Quadratic formula is $\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\begin{aligned}
& \mathrm{x}=\frac{-11 \pm \sqrt{(11)^{2}-4 X 2 X 5}}{2 X 5} \\
& \mathrm{X}=\frac{-11 \pm \sqrt{121-40}}{10} \\
& \mathrm{x}=\frac{-11 \pm \sqrt{81}}{10}=\frac{-11 \pm 9}{10} \\
& \mathrm{x}=\frac{-11+9}{10} \quad \text { or } \quad \mathrm{x}=\frac{-11-9}{10} \\
& \mathrm{x}=\frac{-2}{10} \quad \text { or } \quad \mathrm{x}=\frac{-20}{10} \\
& \mathrm{x}=-\frac{1}{5} \quad \text { or } \quad \mathrm{x}=-2
\end{aligned}
$$

5. Solve the quadratic equation using formula: $x^{2}-8 x+15=0$. Solution: $a=2, b=11, c=5$.
Quadratic formula is $\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\begin{aligned}
& x=\frac{-11 \pm \sqrt{(11)^{2}-4 X 2 X 5}}{2 X 5} \\
& x=\frac{-11 \pm \sqrt{121-40}}{10} \\
& x=\frac{-11 \pm \sqrt{81}}{10}=\frac{-11 \pm 9}{10} \\
& x=\frac{-11+9}{10} \quad \text { or } \quad x=\frac{-11-9}{10} \\
& x=\frac{-2}{10} \quad \text { or } \quad x=\frac{-20}{10} \\
& x=-\frac{1}{5} \quad \text { or } \quad x=-2
\end{aligned}
$$

Practice:

Solve the quadratic equation by using formula method
6. $2 x^{2}+x-5=0$.
7. $x^{2}+2 x+1=0$.
8. $5 x^{2}+31 x+6=0$.
9. $x^{2}-x-30=0$.
10. $4 x^{2}-11 x-3=0$.
11. $x^{2}+2 x-5=0$.

6. Pair of linear equations in two variables: solve x \& $y_{\text {, }}$

1. Solve the equations by elimination method: $x+y=-2 \& 2 x-y=8$.

Solution: let the given equations be $x+y=-2 \& 2 x-y=8$.
$x+y=-2$ \qquad
$2 \mathrm{x}-\mathrm{y}=8$
By eliminating add the above two equations.
We get $x+y=-2$
$\frac{2 x-y=8}{3 x=6}$

$$
x=2
$$

put above x value in any one equation we get y value equation (1) becomes $2+y=-2$

$$
\begin{aligned}
& y=-2-2 \\
& y=-4
\end{aligned}
$$

2. Solve: $x-y=1 \& 2 x-3 y=5$.

Solution: The given two equations are $x-y=1 \& 2 x-3 y=5$.

$$
\begin{align*}
& x-y=1--- \tag{1}\\
& 2 x-3 y=5 \tag{2}
\end{align*}
$$

For eliminating, multiple 2 to the equation (1) we get

$$
\begin{aligned}
& 2 x-2 y=2 \\
& 2 x-3 y=5 \quad \text { subtract this two }
\end{aligned}
$$

$$
y=3
$$

put y value in equation (1) we get $\quad x-(-3)=1$

$$
x=-2
$$

3. Solve: $x-2 y=2 \& 2 x-y=-8$.

Solution: The given two equations are $x-2 y=2 \& 2 x-y=-8$.

$$
\begin{align*}
& x-2 y=2 \tag{1}\\
& 2 x-y=-8- \tag{2}
\end{align*}
$$

For eliminating, multiple 2 to the equation (1) we get

$2 x-4 y=4$ $2 x-y=-8$	subtract this two
put y value$y=-3$	in equation (1) we get $\quad x-2(-3)=1$

$$
x=-5
$$

4. Solve: $3 x+2 y=-5 \& x-6 y=-15$.

Solution: The given two equations are $x-2 y=2 \& 2 x-y=-8$.

$$
\begin{aligned}
& 3 x+2 y=-5-------------(2) \\
& x-6 y=-15----1
\end{aligned}
$$

For eliminating, multiple 3 to the equation (2) we get

$$
\begin{aligned}
& 3 x+2 y=-5 \\
& 3 x-18 y=-45
\end{aligned} \quad \text { subtract this two }
$$

put y value $y=20$ in equation (2) we get $x-6(20)=-45$

$$
x=75
$$

5. Solve: $x-2 y=8 \& 2 x-3 y=14$.

Solution: The given two equations are $x-2 y=8 \& 2 x-3 y=14$.

$$
\begin{aligned}
& x-2 y=8----------(1) \\
& 2 x-3 y=14----(2)
\end{aligned}
$$

For eliminating, multiple 2 to the equation (1) we get

$$
\text { put y value } \begin{array}{r}
2 \mathrm{x}-4 \mathrm{y}=16 \\
2 \mathrm{x}-3 \mathrm{y}=14 \\
\mathrm{y}=-2
\end{array}
$$

$$
2 x-3 y=14 \quad \text { subtract this two }
$$ in equation (1) we get $\quad x-2(-2)=8$

 \(\mathrm{x}=4\)

Practice:

Solve the following equations

1) $x+2 y=10 \& 2 x-4 y=-4$.
2) $3 x+y=-2 \& x+2 y=1$.
3) $x+y=-7 \& 2 x-3 y=1$.
4) $x-y=1 \& 2 x-3 y=5$.
5) $x-2 y=-7 \& 3 x+2 y=3$.
6) $3 x+4 y=10 \& x-8 y=-6$.
7) $4 x-2 y=16 \& 3 x+y=2$.
8) $x+2 y=9 \& 2 x-y=3$.
9) $x+4 y=2 \& 3 x-6 y=18$.
10) $2 x+y=9 \& 3 x-2 y=-4$.
11) $x-y=5 \& 2 x+y=-11$.
12) $8 x+2 y=-2 \& 4 x-6 y=-22$.
13) $6 x+y=1 \& 2 x-y=7$.
14) $x-2 y=8 \& 3 x-6 y=9$.
15) $x+y=4 \& 2 x-3 y=18$.
16) $x-5 y=-14 \& 6 x+y=9$.
17) $x+y=-2 \& 2 x+4 y=-14$.
18) $x-2 y=2 \& 2 x+y=-8$.
19) $2 x+3 y=-5 \& 4 x+8 y=-8$.
20) $x-2 y=-9 \& 3 x+y=1$.
21) $x+2 y=7 \& 3 x-4 y=-9$.

7. Constructions: Dividing the line segment

1. Draw a line segment of length 9 cm and divide it in the ratio $2: 3$.

2. Draw a line segment of length 7.6 cm and divide it in the ratio 5:8.

3. Draw a line segment of length 8.3 cm and divide it in the ratio 2:5.

4. Draw a line segment $\mathrm{PQ}=8.4 \mathrm{~cm}$. Divide PQ into four equal parts using ruler and compass.

5. Draw a line segment of length 7.6 cm divide it in the ratio 3:5.

Practice:

6. Draw a line of length 7 cm , divide it in the ratio $2: 4$.
7. Draw a line segment then divide internally in the ratio of 3:7.
8. Draw a line segment $\mathrm{AB}=10 \mathrm{~cm}$ \& divide it in the ratio $5: 8$.
9. Draw a line of length 7.3 cm and then divide it in the ratio $4: 6$.
10. Draw a line segment of $\mathrm{AB}=8 \mathrm{~cm}$ and divide it in the ratio $3: 2$ by geometrical construction.
11. Construct a tangent to a circle of radius 4 cm at any point P on its circumference.

8. Constructions: Tangent construction

1. Construct tangents to a circle of radius 5 cm such that the angle between the tangents is 60°.

2. Construct a circle of radius 4.5 cm , such that the angle between the two radii is 135°.

3. Draw a circle with the help of a bangle. Take a point outside the circle.

Construct the pair of tangents from this point to the circle.

4. Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measure its length.

Justification:
In $\triangle \mathrm{BPO}$, we have
$\angle B P O=90^{\circ}, O B=6 \mathrm{~cm}$ and $\mathrm{OP}=4 \mathrm{~cm}$
$\therefore \mathrm{OB}^{2}=\mathrm{BP}^{2}+\mathrm{OP}^{2}$ [Using Pythagoras theorem]
$\Rightarrow B P=\sqrt{O B^{2}-O P^{2}}$
$\Rightarrow B P=\sqrt{36-16}=\sqrt{20} \mathrm{~cm}=4.47 \mathrm{~cm}$
Similarly, $B Q=4.47 \mathrm{~cm}$
5. Draw a line segment $A B$ of length 8 cm . Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm . Construct tangents to each circle from the centre of the other circle.

Justification:
On joining BP, we have $\angle \mathrm{BPA}=90^{\circ}$, as $\angle \mathrm{BPA}$ is the angle in the semicircle.
$\therefore \mathrm{AP} \perp \mathrm{PB}$
Since BP is the radius of given circle, so AP has to be a tangent to the circle. Similarly, AQ, BR and BS are the tangents.
6. Construct a pair of tangents to a circle of radius 6.2 cm from an external point 3.8 cm away from the circle.
7. Construct a pair of tangents to a circle of radius 4 cm from an external point 4 cm away from the circle.
8. Construct a tangent to a circle of radius 3.5 cm from a point on the concentric circle of radius 7 cm and measure its length.
9. Construct a pair of tangents to a circle of radius 5.5 cm at the end point of radii. The angle between the two radii is 90°.

9. Statistics: Mean, Median \& Mode.

Mean for grouped data, $\mathrm{x}=\frac{\sum f x}{n}$ (direct method)
Median for grouped data, median= LRL $+\left\{\frac{\frac{n}{2}-f c}{f m}\right\} \times \mathrm{h}$
Mode for grouped data, Mode=LRL $+\left\{\frac{f 1-f 0}{2 f 1-f 0-f 2}\right\} \mathrm{xh}$.

1. Find the mean, median and mode for the gollowing data.

C.I	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
f	5	2	3	6	4

To find the mean,

C.I	f	x	fx
$10-20$	5	15	75
$20-30$	2	25	50
$30-40$	3	35	105
$40-50$	6	45	270
$50-60$	4	55	220
	$\mathrm{n}=20$		$\sum f x=720$

Mean=36

To find the median, first we should find $\frac{n}{2},=\frac{20}{2}=10$

C.I	f	f_{c}
$10-20$	5	5
$20-30$	2	7
$30-40$	3	10
$40-50$	6	16
$50-60$	4	20
	$\mathrm{n}=20$	

$$
\begin{aligned}
& \text { Median }=\mathrm{LRL}+\left\{\frac{\frac{n}{2}-f c}{f m}\right\} \times \mathrm{h} \quad \text { LRL=30, } \mathrm{f}_{\mathrm{m}}=3, \mathrm{f}_{\mathrm{c}}=7 \& \mathrm{~h}=1 \\
& =30+\left\{\frac{10-7}{3}\right\} \times 10=30+1 \times 10
\end{aligned}
$$

Median $=30+10=40$

To find the mode, note that $\mathrm{f}_{1}, \mathrm{f}_{0} \& \mathrm{f}_{2}$.

C.I	f
$10-20$	5
$20-30$	2
$30-40$	$3 \mathrm{f}_{0}$
$40-50$	$6 \mathrm{f}_{1}$
$50-60$	$4 \mathrm{f}_{2}$

$$
\begin{aligned}
\text { Mode } & =\text { LRL }+\left\{\frac{f 1-f 0}{2 f 1-f 0-f 2}\right\} \times \mathrm{h}, \quad \text { LRL }=40, \mathrm{f}_{1}=6, \mathrm{f}_{0}=3 \& \mathrm{f}_{2}=4 . \\
& =40+\left\{\frac{6-3}{12-3-4}\right\} \times 10 \Rightarrow 40+\left(\frac{3}{5}\right) \mathrm{X} 10 \\
& =40+6 .
\end{aligned}
$$

Mode=46

2. Find the mean, median and mode for the gollowing data.

C.I	$2-6$	$7-11$	$12-16$	$17-21$	$22-26$
f	7	13	8	7	5

To find the mean,

C.I	f	x	fx
$2-6$	7	4	28
$7-11$	13	9	117
$12-16$	8	14	112
$17-21$	7	19	133
$22-26$	5	24	120
	$\mathrm{n}=40$		$\sum f x=510$

Mean=12.75

To find the median, first we should find $\frac{n}{2},=\frac{40}{2}=20$

C.I	f	fc
$2-6$	7	7
$7-11$	13	20
$12-16$	8	28
$17-21$	7	35
$22-26$	5	40
	$\mathrm{n}=40$	

$$
\begin{aligned}
& \text { median }=\operatorname{LRL+\{ \frac {\frac {n}{2}-fc}{fm}\} \times \mathrm {h}\quad \text {LRL=7,}\mathrm {f}_{\mathrm {m}}=13,\mathrm {f}_{\mathrm {c}}=7\& \mathrm {h}=5} \\
& \quad=7+\left\{\frac{20-13}{7}\right\} \times 5=7+5 \\
& \text { Median }=12
\end{aligned}
$$

To find the mode, note that $\mathrm{f}_{1}, \mathrm{f}_{0} \& \mathrm{f}_{2}$.

C.I	f	
$2-6$	7	f_{0}
$7-11$	13	f_{1}
$12-16$	8	f_{2}
$17-21$	7	
$22-26$	5	

$$
\begin{aligned}
\text { Mode } & =\text { LRL }+\left\{\frac{f 1-f 0}{2 f 1-f 0-f 2}\right\} \times \mathrm{h}, \quad \text { LRL }=7, \mathrm{f}_{1}=13, \mathrm{f}_{0}=7 \& \mathrm{f}_{2}=8 . \\
& =7+\left\{\frac{13-7}{26-7-8}\right\} \mathrm{X} 5 \Rightarrow 7+\left(\frac{6}{11}\right) \mathrm{X} 10 \\
& =7+5.4 . \\
& =12.4 .
\end{aligned}
$$

3. Find the mean, median and mode for the gollowing data.

C.I	$1-5$	$6-10$	$11-15$	$16-20$	$21-25$
f	6	7	4	8	5

To find the mean,

C.I	f	x	fx
$1-5$	6	4	24
$6-10$	7	9	63
$11-15$	4	14	56
$16-20$	8	19	152
$21-25$	5	24	120
	$\mathrm{n}=30$		$\sum f x=415$

Mean=13.83

To find the median, first we should find $\frac{n}{2},=\frac{30}{2}=15$

C.I	f	fc
$1-5$	6	6

$6-10$	7	13
$11-15$	4	17
$16-20$	8	25
$21-25$	5	30
	$\mathrm{n}=30$	

$$
\begin{aligned}
\text { median } & =\operatorname{LRL}+\left\{\frac{\frac{n}{2}-f c}{f m}\right\} \times \mathrm{h} \\
& =11+\left\{\frac{\text { LRL }=11, \mathrm{f}_{\mathrm{m}}=4, \mathrm{f}_{\mathrm{c}}=13 \& \mathrm{~h}=5}{4}\right\} \times 5=11+2.5 \\
& \text { Median }=13.5
\end{aligned}
$$

To find the mode, note that $\mathrm{f}_{1}, \mathrm{f}_{0} \& \mathrm{f}_{2}$.

C.I	f
$1-5$	6
$6-10$	7
$11-15$	$4 \mathrm{f}_{0}$
$16-20$	$8 \mathrm{f}_{1}$
$21-25$	$5 \mathrm{f}_{2}$

Mode $=\operatorname{LRL}+\left\{\frac{f 1-f 0}{2 f 1-f 0-f 2}\right\} \times \mathrm{h}, \quad$ LRL=16, $\mathrm{f}_{1}=8, \mathrm{f}_{0}=4 \& \mathrm{f}_{2}=5$.

$$
\begin{aligned}
& =16+\left\{\frac{8-4}{16-4-5}\right\} \times 5 \Rightarrow 16+\left(\frac{4}{7}\right) \times 10 \\
& =16+5.71 . \\
& =21.71 .
\end{aligned}
$$

Practice:

Find the mean, Median and Mode for the following data.

C.I	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
f	3	4	2	7	4

C.I	$3-13$	$13-23$	$23-33$	$33-43$	$43-53$	$53-63$
f	12	9	8	13	5	3

C.I	$2-6$	$7-11$	$12-16$	$17-21$	$22-26$
f	5	7	4	8	6

C.I	$1-5$	$6-10$	$11-15$	$16-20$	$21-25$
f	1	2	4	1	2

10. Statistics: Ogive graph.

1. Convert the following as less than type then draw its ogive.

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
No.of students	10	10	6	4	4	4	6	6	10

2.

The following table gives production yield of rice per hectare in some farms of a village:

Production yield (in kg/hectare)	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
No. of farms	3	9	12	20	6

Draw a 'more than type' ogive. Also, find median from the curve.

Production yield (in kg/ hectare) Class interval	Frequency	Production yield more than or equal to	$\boldsymbol{c}, \boldsymbol{f}$
$10-20$	3	10	50
$20-30$	9	20	47
$30-40$	12	30	38
$40-50$	20	40	26
$50-60$	6	50	6

3. Draw a 'less than type' ogive for the following frequency distribution.

Class	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$	$40-45$
Frequency	13	18	31	25	15	5

Solution:

Class	Frequency
Less than 20	13
Less than 25	$13+18=31$
Less than 30	$31+31=62$
Less than 35	$62+25=87$
Less than 40	$87+15=102$
Less than 45	$102+5=107$

4.

The following table gives production yield of rice per hectare in some farms of a village:

Production yield (in kg/hectare)	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
No. of farms	3	9	12	20	6

Draw a 'more than type' ogive. Also, find median from the curve.
Solution:

Production yield (in kg/ hectare) Class interval	Frequency	Production yield more than or equal to	\boldsymbol{c}.f
$10-20$	3	10	50
$20-30$	9	20	47
$30-40$	12	30	38
$40-50$	20	40	26
$50-60$	6	50	6

Practice:

5.

No. of mangoes	$50-52$	$53-55$	$56-58$	$59-61$	$62-64$
No. of boxes	15	110	135	115	25

6.

Marks obtained	Less than 20	Less than 30	Less than 40	Less than 50
No. of students cumulative frequency	8	13	19	24

7.

Weight (in kg)	$50-55$	$55-60$	$60-65$	$65-70$	$70-75$	$75-80$
No. of candidates	13	18	45	16	6	2

8.

Class	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
Frequency	16	14	24	26	x

9.

Length (in mm)	$109-117$	$118-126$	$127-135$	$136-144$	$145-153$	$154-162$	$163-171$
No. of leaves	4	6	14	13	6	4	3

11. Circle: Theorems.

1. Prove that "the tangent at any point of a circle is perpendicular to the radius through the point of contact".
Solution:

Given: a circle $\mathrm{C}(0, \mathrm{r})$ and a tangent l at point A .
To prove: OA $\perp 1$
Construction: Take a point B, other than A, on the tangent l. join OB. Suppose OB meets the circle in C.
Proof: We know that, among all line segment joining the point 0 to a point on l , the perpendicular is shortest to l.
$0 A=O C$ (Radius of the same circle)
Now, OB=0C+BC.
$\therefore \mathrm{OB}>0 \mathrm{C}$
$\Rightarrow O B>O A$
$\Rightarrow 0 A<O B$
B is an arbitrary point on the tangent l. Thus, $O A$ is shorter than any other line segment joining 0 to any point on 1 .
Here $\mathrm{OA} \perp \mathrm{l}$.
2. Prove that "the lengths of the tangent drawn from an external point to the circle are equal".
Solution:
Given: A circle with center O. PA \& PB are two tangents drawn from an external point P.

To prove: $\mathrm{PA}=\mathrm{PB}$

Construction: Join OA, OB \& OP.
Proof: It is known that a tangent is at any point of a circle is perpendicular to the radius through the point of contact.
$O A \perp P A \& O B \perp P B$
In $\triangle \mathrm{OPA} \& \mathrm{OPB},\llcorner O P A=\llcorner O P B$
$\mathrm{OA}=\mathrm{OB} \quad$ (radii)
$\mathrm{OP}=\mathrm{OP} \quad$ (common)
Hence $\triangle \mathrm{OPA}$ is congruent to $\triangle \mathrm{OPB}$. Therefore $\mathrm{AP}=\mathrm{PB}$.

12. Pair of linear equations in two variables: Graphical solution.

1. Solve by graphically: $x-y=4 \& x+y=10$.

Solution: $x-y=4$
-(i) \& $x+y=10$
From equation (i), we have the following table:

x	0	4	7
y	-4	0	3

From equation (ii), we have the following table:

\boldsymbol{x}	0	10	7
\boldsymbol{y}	10	0	3

Plotting this, we have

Here, the two lines intersect at point $(7,3)$ i.e., $x=7, y=3$.

2. Show graphically the given system of equations

 $2 x+4 y=10$ and $3 x+6 y=12$ has no solution.Solution: $2 x+4 y=10---------(i) \quad \& \quad 3 x+6 y=12$
From equation (i), we have the following table:

x	1	3	5
y	2	1	0

From equation (ii), we have the following table:

x	2	0	4
y	1	2	0

Plot the points $\mathrm{D}(2,1), \mathrm{E}(0,2)$ and $\mathrm{F}(4,0)$ on the same graph paper. Join D, E and F and extend it on both sides to obtain the graph of the equation $3 x+6 y=12$.

We find that the lines represented by equations $2 x+4 y=10$ and $3 x+$ $y=12$ are parallel. So, the two lines have no common point. Hence, the given system of equations has no solution.

3. Draw the graph of $2 x+y=6$ and $2 x-y+2=0$.

Solution:
We have, $2 \mathrm{x}+\mathrm{y}=6$

$$
\begin{equation*}
2 x-y=-2 \tag{i}
\end{equation*}
$$

From equation (i), we have the following table:

x	0	3	2
y	6	0	2

From equation (ii), we have the following table:

x	0	-1	1
y	2	0	4

4. Draw the graph of the equations $x-y+1=0$ and $3 x+2 y-12=0$.

Solution: we have $x-y=-1$
$3 x+2 y=12------(i i)$
From equation (i), we have the following table:

x	-1	0	2
y	0	1	3

From equation (ii), we have the following table:

\boldsymbol{x}	0	4	2
\boldsymbol{y}	6	0	3

Practice: solve the following equations graphically
5. $x+2 y=9 \& 2 x-y=3$.
6. $x-2 y=2 \& 2 x+y=-8$.
7. $x-2 y=-9 \& 3 x+y=1$.
8. $x+2 y=4 \& 6 x+y=13$.
9. $X+2 y=1 \& 2 x+3 y=-1$.
10. $X-2 y=8 \& 2 x-3 y=14$.
11. $x-y=5 \& 2 x+y=-11$.
12. $x+y=-7 \& 2 x-3 y=1$.
13. $x+4 y=2 \& 3 x-6 y=18$.

13. Constructions: Constructions of similar triangles.

This construction is depends on two type of fractions, one is proper and another is improper fraction. Let's see both in different examples.

1. Construct a triangle with sides $4 \mathrm{~cm}, 5 \mathrm{~cm} \& 6 \mathrm{~cm}$ and then another triangle whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.

2. Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm} \& 7 \mathrm{~cm}$ and then another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.

Solution:

3. Construct a right angled triangle with sides $3 \mathrm{~cm} \& 4 \mathrm{~cm}$ and then another triangle whose sides are $\frac{5}{3}$ of the corresponding sides of the first triangle.

Solution:

4. Construct a triangle ABC with base $\mathrm{AB}=5 \mathrm{~cm}, ᄂ \mathrm{ABC}=60^{\circ} \& B C=7 \mathrm{~cm}$ and then another triangle whose sides are $\frac{7}{5}$ of the corresponding sides of the first triangle.

Solution:

5. Construct a triangle ABC with $\mathrm{AB}=5 \mathrm{~cm},\left\llcorner\mathrm{ABC}=60^{\circ} \& \mathrm{BC}=6 \mathrm{~cm}\right.$ and then another triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the first triangle.

Solution:

Practice:

6. Draw a triangle ABC with side $\mathrm{BC}=6 \mathrm{~cm}, \mathrm{~L} B=60^{\circ},\left\llcorner A=10^{\circ}\right.$ Then construct a triangle a triangle whose sides are $\frac{1}{3}$ times the corresponding sides of $\Delta \mathrm{ABC}$.
7. Draw a triangle $P Q R$ with side $Q R=5 \mathrm{~cm}, ~ L Q=45^{\circ}, L P=105^{\circ}$. Then construct a triangle a triangle whose sides are $\frac{5}{2}$ times the corresponding sides of $\Delta P Q R$.
8. Construct an isosceles triangle whose base is 5 cm and altitude 3 cm and then another triangle whose sides are $\frac{2}{5}$ times the corresponding sides of the isosceles triangle.
9. Construct a triangle with sides $3.5 \mathrm{~cm}, 4 \mathrm{~cm} \& 5 \mathrm{~cm}$ and then another triangle whose sides are $\frac{3}{5}$ of the corresponding sides of the first triangle.
10. Construct a triangle with sides $3 \mathrm{~cm}, 4 \mathrm{~cm} \& 6 \mathrm{~cm}$ and then another triangle whose sides are $\frac{7}{4}$ of the corresponding sides of the first triangle.
11. Construct a right angled triangle with sides $5 \mathrm{~cm} \& 6 \mathrm{~cm}$ and then another triangle whose sides are $2 \frac{1}{2}$ of the corresponding sides of the first triangle.

14. TRIANGLES: Theorems.

1. Basic proportionality theorem(B.P.T) or Thales Theorem:**-

"If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio".

Let ABC be the triangle.
The line \mathbf{l} parallel to $\mathbf{B C}$ intersect $\mathbf{A B}$ at \mathbf{D} and $\mathbf{A C}$ at \mathbf{E}.
To prove: $\frac{D B}{A D}=\frac{C B}{\mathrm{AE}}$
Join BE,CD
Draw $E F \perp A B, D G \perp C A$
Since $E F \perp A B$,
EF is the height of triangles ADE and DBE
Area of \triangle ADE $=\frac{1}{2} \times$ base \times height $=\frac{1}{2} \times \mathbf{A D} \times$ EF
Area of $\triangle D B E=\frac{1}{2} \times D B \times E F$
$\frac{\text { areaof } \triangle D B E}{\text { areaof } \triangle A D E}=\frac{1 / 2 \times D B \times E F}{1 / 2 \times A D \times E F} \times \frac{D B}{A D}$
Similarly,
$\frac{\text { areaof } \triangle D B E}{\text { areaof } \triangle \mathrm{ADE}}=\frac{1 / 2 \times C B \times E F}{1 / 2 \times A E \times E F} \times \frac{C B}{A E}$
But \triangle DBE and \triangle DCE are the same base DE and between the same parallel straight line BC and DE.
Area of $\triangle D B E=$ area of $\triangle D C E$
From (1), (2) and (3), we have
$\frac{D B}{A D}=\frac{C B}{A E}$
Hence proved.

2. Pythagoras theorem:

In a right angles triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.

Data: In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}$
To Prove: $\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{CA}^{2}$
Construction: Draw BD $\perp \mathrm{AC}$.

Proof: Statement

Reason

 Compare $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADB}$, $\angle \mathrm{ABC}=\angle \mathrm{ADB}=90^{\circ}$ $\angle B A D$ is common.$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{ADB}$
$\Rightarrow \frac{A B}{A D}=\frac{A C}{A B}$
$\therefore \mathrm{AB}^{2}=\mathrm{AC}$. AD
Compare $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BDC}$, $\angle \mathrm{ABC}=\angle \mathrm{BDC}=90^{\circ}$
(Q Data and construction)
$\angle A C B$ is common
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{BDC} \quad$ (Q Equiangular Triangles)
$\Rightarrow \frac{B C}{D C}=\frac{A C}{B C} \Rightarrow=$ (Q AA similarity criteria)

$$
\mathrm{BC}^{2}=\mathrm{AC} \cdot \mathrm{DC}(2)
$$

By adding (1) and (2) we get
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=(\mathrm{AC} . \mathrm{AD})+(\mathrm{AC} . \mathrm{DC})$
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}(\mathrm{AD}+\mathrm{DC})$
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC} . \mathrm{AC}=\mathrm{AC}^{2}$
$[\mathrm{QAD}+\mathrm{DC}=\mathrm{AC}]$
$\therefore \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$

3. AA similarity Criterion theorem:

"If two triangles are equiangular then their corresponding sides are in proportion"

Data: In $\triangle A B C$ and $\triangle D E F$
(i) $\angle \mathrm{BAC}=\angle \mathrm{EDF}$
(ii) $\angle \mathrm{ABC}=\angle \mathrm{DEF}$

To prove: $\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}$
Construction: Mark points ' G ' and ' H ' on AB and AC such that
(i) $\mathrm{AG}=\mathrm{DE}$ and (ii) $\mathrm{AH}=\mathrm{DF}$ Join G and H
Proof:
Compare

Statement
$\triangle \mathrm{AGH}$ and $\triangle \mathrm{DEF}$, $\mathrm{AG}=\mathrm{DE}$ $\angle \mathrm{GAH}=\angle \mathrm{EDF}$ $\mathrm{AH}=\mathrm{DF}$
$\therefore \triangle \mathrm{AGH} \cong \triangle \mathrm{DEF}$
$\therefore \angle \mathrm{AGH}=\angle \mathrm{DEF}$

$$
\begin{aligned}
\text { But } \angle \mathrm{ABC} & =\angle \mathrm{DEF} \\
\Rightarrow \angle \mathrm{AGH} & =\angle \mathrm{ABC}
\end{aligned}
$$

[Axiom - 1]
$\therefore \mathrm{GH}|\mid \mathrm{BC}$ [If corresponding angles are equal then lines are ||.]
\therefore In $\triangle \mathrm{ABC} \frac{A B}{A G}=\frac{B C}{G H}=\frac{C A}{H A} \quad$ [third corollary to Thales theorem]
Hence $\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}$

4. Area Of Similar Triangle:

Prove that "The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides".

We need to prove that

$$
\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(P Q R)}=\left(\frac{A B}{P Q}\right)^{2}=\left(\frac{B C}{Q R}\right)^{2}=\left(\frac{C A}{R P}\right)^{2}
$$

Now, $\operatorname{ar}(A B C)=\frac{1}{2} \times B C \times A M$
and $\operatorname{ar}(P Q R)=\frac{1}{2} \times Q R \times P N$
So, $\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(P Q R)}=\frac{\frac{1}{2} \times B C \times A M}{\frac{1}{2} \times Q R \times P N}$.
Now, in $\triangle \mathrm{ABM}$ and $\triangle \mathrm{PQN}$,
$\angle \mathrm{B}=\angle \mathrm{Q} \quad($ As $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR})$
and $\angle \mathrm{M}=\angle \mathrm{N} \quad$ (Each is 90°)
So, $\triangle \mathrm{ABM} \sim \triangle \mathrm{PQN} \quad$ (AA similarity criterion)
Therefore, $\frac{A M}{P N}=\frac{A B}{P Q} \ldots$
Also, $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ (Given)
So, $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{C A}{R P}$.
Therefore, $\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(P Q R)}=\frac{A B}{P Q} \times \frac{A M}{P N}$
[From (1) \& (3)]
$=\frac{A B}{P Q} \times \frac{A B}{P Q} \quad[$ From (2) $]$
$=\left(\frac{A B}{P Q}\right)^{2}$
Now using (3) we get:
$\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(P Q R)}=\left(\frac{A B}{P Q}\right)^{2}=\left(\frac{B C}{Q R}\right)^{2}=\left(\frac{C A}{R P}\right)^{2}$

INTRODUCTION TO TRIGONOMETRY

TRIGONOMETRIC FUNCTIONS

Si No	Function	Description	Ratios
1	$\operatorname{Sin} \theta$	$\mathrm{Opp} / \mathrm{Hyp}$	$\mathrm{AB} / \mathrm{AC}$
2	$\operatorname{Cos} \theta$	$\mathrm{Adj} / \mathrm{Hyp}$	
3	Tan θ	$\mathrm{Opp} / \mathrm{Adj}$	
4	$\operatorname{Cot} \theta$	$\mathrm{Adj} / \mathrm{Opp}$	
5	$\operatorname{Sec} \theta$	$\mathrm{Hyp} / \mathrm{Adj}$	
6	$\operatorname{Cosec} \theta$	$\mathrm{Hyp} / \mathrm{Opp}$	

INVERSE TRIGONOMETRIC FUNCTIONS

$\operatorname{Sin} \theta=1 / \operatorname{Cosec} \theta$	$\operatorname{Cos} \theta=1 / \operatorname{Sec} \theta$	$\operatorname{Tan} \theta=1 / \cot \theta$
$\operatorname{Cosec} \theta=\frac{1}{2} \operatorname{Sin} \theta$	$\operatorname{Sec} \theta=1 / \operatorname{Cos} \theta$	$\operatorname{Cot} \theta=1 / \operatorname{Tan} \theta$

1. If $7 \operatorname{Cos} \theta=4$, Find the Value of other Trigonometric Functions

A	$\begin{gathered} \text { Acc to PT } \\ \mathbf{A C}^{2}=\mathbf{A B}^{2}+\mathbf{B C}^{2} \\ \mathbf{A B}^{2}=\mathbf{A C ^ { 2 } - \mathbf { B C } ^ { 2 }} \end{gathered}$	$\operatorname{Cos} \theta={ }^{\text {Adj }} / \mathrm{Hyp}=4 / 7$	$\boldsymbol{S i n} \theta=\mathrm{Opp}_{\mathbf{H y p}}={ }^{\text {V23/7}}$	Tan $\theta={ }^{\text {Ppp }} /{ }_{\text {Adj }}={ }^{\text {2 }}$ / $/ 4$
	$\begin{aligned} & =49-16=23 \\ A B & =\sqrt{ } 23 \end{aligned}$	$\boldsymbol{C o t} \boldsymbol{\theta}={ }^{\text {Adj }} / \mathrm{Opp}=4 / \sqrt{23}$	$\operatorname{Sec} \theta={ }^{\text {Hyp }} / /_{\text {Adj }}=7 / 4$	$\operatorname{Cosec} \boldsymbol{\theta}={ }^{\mathrm{Hyp}} / \mathrm{opp}={ }^{7} / \sqrt{23}$

For Practice : 1. If $5 \operatorname{Cos} A=4$ Write all other Trigonometric ratios.
2. If $3 \operatorname{Cosec} A=7$, Write all other Trigonometric ratios.

Values of Trigonometric Functions for Different angles

θ	0°	30°	45°	60°	90°
Sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
Cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
Tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	ND
Cot	ND	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0
Sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	ND
Cosec	ND	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1

TRIGNOMETRIC FUNCTIONS OF COMPLEMENTARY ANGLES

$\operatorname{Sin}(90-\theta)=\operatorname{Cos} \theta$	$\operatorname{Cosec}(90-\theta)=\operatorname{Sec} \theta$	$\operatorname{Tan}(90-\theta)=\operatorname{Cot} \theta$
$\operatorname{Cos}(90-\theta)=\operatorname{Sin} \theta$	$\operatorname{Sec}(90-\theta)=\operatorname{Cosec} \theta$	$\operatorname{Cot}(90-\theta)=\operatorname{Tan} \theta$

Solve the following

1. Find the value of

$$
5 \operatorname{Cos}^{2} 60^{\circ}+4 \operatorname{Sec}^{2} 30^{\circ}-\tan ^{2} 45^{\circ}
$$

$\operatorname{Sin}^{2} 30^{\circ}+\operatorname{Cos}^{2} 30^{\circ}$

$$
\begin{aligned}
& =\frac{5 \times(1 / 2)^{2}+4(2 / \sqrt{3})^{2}-1}{(1 / 2)^{2}+(\sqrt{3} / 2)^{2}}=\frac{5 \times(1 / 4)+4\left({ }^{4} / 3\right)-1}{1 / 4+3 / 4}=\frac{5 / 4+16 / 3-1}{1} \\
& =5 / 4+16 / 3-1=79 / 12-1=67 / 12
\end{aligned}
$$

For Practice : a. $6 \operatorname{Sin}^{2} 30^{\circ}+5 \operatorname{Cos}^{2} 60^{\circ}=$?

$$
\text { b. } \operatorname{Sin} 60^{\circ}+\operatorname{Sec} 45^{\circ}+\operatorname{Cos} 60^{\circ}=? \quad \text { c. } \frac{\operatorname{Tan} 60^{\circ}+\operatorname{Tan} 30^{\circ}}{1+\operatorname{Tan} 60^{\circ} \operatorname{Tan} 30^{\circ}}=?
$$

$\tan 65^{\circ}$
2. Evaluate : $\frac{\tan 65^{\circ}}{\cot }=$?
3. P T $: \tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$
$=\tan 48^{\circ} \times \tan 23^{\circ} \times{ }^{1} / \cot 42^{\circ} \times{ }^{1} / \cot 67^{\circ}$
$=\frac{\operatorname{Tan}\left(90-25^{\circ}\right)}{\operatorname{Cot} 25^{\circ}}=\frac{\operatorname{Cot} 25^{\circ}}{\operatorname{Cot} 25^{\circ}}=1 \quad=\tan 48^{\circ} \times \tan 23^{\circ} \times{ }^{1} / \tan 48^{\circ} \times{ }^{1} / \tan 23^{\circ}=1$
4. $\frac{\operatorname{Sin} 72^{\circ}}{{\mathbf{C o s} 12^{\circ}}^{\circ}}=\frac{\operatorname{Sin} 72^{\circ}}{\operatorname{Cos}(90-72)^{\circ}}=\frac{\operatorname{Sin} 72^{\circ}}{\operatorname{Sin} 72^{\circ}}=1$
5. If $\sec 4 A=\operatorname{cosec}\left(A-20^{0}\right)$, where $4 A$ is an acute angle, find the value of A.

$$
\begin{aligned}
\sec 4 \mathrm{~A} & =\operatorname{cosec}(\mathrm{A}-20) \\
\operatorname{cosec}(90-4 \mathrm{~A}) & =\operatorname{cosec}(\mathrm{A}-20) \\
90-4 \mathrm{~A} & =\mathrm{A}-20 \\
90+20 & =\mathrm{A}+4 \mathrm{~A} \\
110 & =5 \mathrm{~A} \\
\mathrm{~A}=110 / 5 & =22^{\circ}
\end{aligned}
$$

For Practice : a. P. T. Tan $48^{\circ} . \operatorname{Tan} 42^{\circ} . \operatorname{Tan} 42^{\circ} . \operatorname{Tan} 48^{\circ}=1$

APPLICATION OF TRIGONOMETRY

1. Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30°, respectively. Find the height of the poles and the
distances of the point from the poles.
in Right angle $\triangle \mathrm{ABC}\left\lfloor\mathrm{C}=60^{\circ}\right.$.
$\tan 60^{\circ}=\frac{\mathrm{AB}}{\mathrm{AC}}$
$\frac{1}{\sqrt{3}}=\frac{h}{(80-x)}$
$\sqrt{3}=\frac{h}{x}$
$h=\sqrt{3} \mathrm{x} \rightarrow(1)$

$$
\begin{equation*}
\mathrm{h}=\frac{(80-\mathrm{x})}{\sqrt{3}} \rightarrow \tag{2}
\end{equation*}
$$

From (1) and (2)
$\sqrt{3} x=\frac{80-x}{\sqrt{3}}$
Again in right angle $\triangle \mathrm{PQC}, \angle \mathrm{C}=30^{\circ}$.

$\tan 30^{\circ}=\frac{\mathrm{PQ}}{\mathrm{PC}}=\frac{\mathrm{h}}{(80-\mathrm{x})}$
2. From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower.

Let $A B$ be the height of tower
$A B=(h+7) m$ and $P Q$ be the height of building
In Right angle $\triangle \mathrm{PQB}\left\lfloor\mathrm{B}=45^{\circ}\right.$

$$
\begin{aligned}
\tan 45^{\circ} & =\frac{\mathrm{PQ}}{\mathrm{BQ}} \\
1 & =\frac{\mathrm{PQ}}{\mathrm{BQ}} \quad[\mathrm{PQ}=7 \mathrm{~m}]
\end{aligned}
$$

$$
\begin{aligned}
\sqrt{3} & =\frac{\mathrm{h}}{\mathrm{PC}} \\
\mathrm{~h} & =\mathrm{PC} \sqrt{3}(\mathrm{PC}=\mathrm{BQ}=7 \mathrm{~m}) \\
\mathrm{h} & =7 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

So, height of tower $=A B=7+h$
$=7+7 \sqrt{3}$

$=7(\sqrt{3}+1) \mathrm{m}$
$B Q=7 m$
Again In Right angle $\triangle \mathrm{APC}\left\lfloor\mathrm{P}=60^{\circ}\right.$
$\tan 60^{\circ}=\frac{\mathrm{AC}}{\mathrm{PC}}$
3. As observed from the top of a 75 m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships.
Let the height of light house be $\mathrm{AB}=$ 75 m and distance between two ships be $\mathrm{DC}=\mathrm{x}$
In Right angle $\triangle \mathrm{ABD}\left\lfloor\mathrm{D}=45^{\circ}\right.$

$$
\tan 45^{\circ}=\frac{\mathrm{AB}}{\mathrm{BD}}
$$

$$
1=\frac{75}{\mathrm{BD}}
$$

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{\mathrm{AB}}{\mathrm{BC}} \\
\frac{1}{\sqrt{3}} & =\frac{75}{\mathrm{BD}+\mathrm{DC}} \\
\frac{1}{\sqrt{3}} & =\frac{75}{75+\mathrm{x}} \\
75+\mathrm{x} & =75 \sqrt{3}
\end{aligned}
$$

$\mathrm{BD}=75 \mathrm{~m}$
In Right angle $\triangle \mathrm{ABC}\left\lfloor\mathrm{C}=30^{\circ}\right.$

$$
\begin{aligned}
& x=75 \sqrt{3}-75 \\
& x=75(\sqrt{3}-1) m
\end{aligned}
$$

4. From a point on the ground 40 m away from the foot of a tower, the angle of elevation of the top of a tower is 30°,the angle of elevation of the top of water tank on top of the tower is 45°. Find (i) height of the tower (ii) depth of the tank
(i) Height of the tower . Depth of the tank is CD.

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{\mathrm{AC}}{\mathrm{AB}} & \tan 45^{\circ} & =\frac{\mathrm{AD}}{\mathrm{AB}} \\
\frac{1}{\sqrt{3}} & =\frac{\mathrm{AC}}{40} & 1 & =\frac{\mathrm{AD}}{40}
\end{aligned}
$$

5. A tree is broken over by the wind forms a right angled triangle with the ground. IF the broken parts makes an angle of 60°, with the ground and the top of the tree is now 20 m from its base, how tall was the tree.

$$
\begin{aligned}
\text { In } \triangle^{\mathrm{le}} \mathrm{ABC}\lfloor\mathrm{~B} & =90^{\circ} . & \tan 60^{\circ} & =\frac{\mathrm{AB}}{\mathrm{AC}} \\
\cos 60^{\circ} & =\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{20}{\mathrm{BC}} & \sqrt{3} & =\frac{\mathrm{AB}}{20} \\
\frac{1}{2} & =\frac{20}{\mathrm{BC}} & \mathrm{AB} & =20 \sqrt{3} \mathrm{~m} .
\end{aligned}
$$

6. There is a small island in the middle of a 100 m wide river and a tall tree stands on the island . P and Q are points directly opposite to each other on two banks and in the line with the tree . If the angle of elevation of the top of the tree from P and Q are respectively 30° and 45° find the height of the tree

$$
\begin{aligned}
& \text { Let } \mathrm{OA} \text { be the tree of height } \mathrm{h} \text { metre. } \\
& \text { In triangle POA and QOA, we have } \\
& \tan 30^{\circ}=\frac{\mathrm{OA}}{\mathrm{OP}} \text { and } \tan 45^{\circ}=\frac{\mathrm{OA}}{\mathrm{OQ}} \\
& \Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{h}}{\mathrm{OP}} \text { and } 1=\frac{\mathrm{h}}{\mathrm{OQ}} \\
& \Rightarrow \mathrm{OP}=\sqrt{3} \mathrm{~h} \text { and } \mathrm{OQ}=\mathrm{h} \\
& \Rightarrow \mathrm{OP}+\mathrm{OQ}=\sqrt{3} \mathrm{~h}+\mathrm{h} \\
& \Rightarrow \mathrm{PQ}=(\sqrt{3}+1) \mathrm{h}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad 100=(\sqrt{3}+1) \mathrm{h}[\because \mathrm{PQ}=100 \mathrm{~m}] \\
& \Rightarrow \quad \mathrm{h}=\frac{100}{\sqrt{3}+1} \mathrm{~m} \\
& \Rightarrow \mathrm{~h}=\frac{100(\sqrt{3}+1)}{2} \mathrm{~m} \\
& \Rightarrow \quad \mathrm{~h}=50(1.732-1) \mathrm{m}=36.6 \mathrm{~m}
\end{aligned}
$$

$$
\text { Hence, the height of the tree is } 36.6 \mathrm{~m} \text {. }
$$

PRACTICE PAPER

1. The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 50 m high, find the height of the building.
2. Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30°, respectively. Find the height of the poles and the distances of the point from the poles.
3. From a point 20 m away from the foot of a tower, the angle of elevation of top of the tower is 30°, Find the height of the tower.
4. An electric pole is 10 m high. A steel wire tied to the top of the pole is affixed at a point on the ground to keep the pole upright. If the wire makes an angle of 45° with the horizontal through the foot of the pool, find the length of the wire.

SURFACE AREA \& VOLUME

	CSA	T S A	VOLUME
Cylinder	$2 \pi \mathrm{rh}$	$2 \pi \mathrm{r}(\mathrm{r}+\mathrm{h})$	$\pi r^{2} h$
Cone	$\pi \mathrm{rl}$	$\pi \mathrm{r}(\mathrm{r}+1)$	$1 / 3 \pi r^{2} h$
Sphere	$4 \pi \mathrm{r}^{2}$		$4 / 3 \pi r^{3}$
Hemisphere	$2 \pi \mathrm{r}^{2}$	$3 \pi \mathrm{r}^{2}$	$2 / 3 \pi \mathrm{r}^{3}$
Frustrum of Cone	$\boldsymbol{\pi}\left(\mathbf{r}_{1}+\mathrm{r}_{2}\right) \mathbf{1}$	$\pi\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right) \mathbf{I}+\pi\left(\mathrm{r}_{1}{ }^{2}+\mathrm{r}_{2}{ }^{2}\right)$	$1 / 3 \pi\left(\mathbf{r}_{1}{ }^{2}+\mathbf{r}_{2}{ }^{2}+\mathbf{r}_{1} \mathbf{r}_{2}\right)$
Cube	Surface Area $=6 \mathrm{a}^{\mathbf{2}}$		a^{3}
Cuboid	Surface Area $=\mathbf{2}(\mathrm{lb}+\mathrm{bh}+\mathrm{hl})$		$1 \times b \times h$

1) What is the volume of a Cylinder having the area of its circular base 154 Sq cm and height 10 cm .

Ans: $\pi r^{2}=154 \quad \mathrm{Sq} \mathrm{cm} \mathrm{h}=10 \mathrm{~cm}$

$$
\begin{aligned}
\mathrm{V} & =\pi \mathrm{r}^{2} \mathrm{~h} \\
& =154 \times 10=\mathbf{1 5 4 0} \mathbf{c m}^{3}
\end{aligned}
$$

2) What is the volume of a Cylinder having the area of its circular base $\mathbf{2 2 S q} \mathbf{~ c m}$ and height 10 cm .

Ans: $\pi r^{2}=22 \quad \mathrm{Sqcm} \mathrm{h}=10 \mathrm{~cm}$

$$
\begin{aligned}
\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h} & =22 \times 10 \\
& =\mathbf{2 2 0} \mathbf{c m}^{\mathbf{3}}
\end{aligned}
$$

3. The height and areas of circular bases of a cylinder and a cone are equal. If Volume of cylinder if $360 \mathrm{~cm}^{3}$, What would be the volume of Cone

Ans: Vol of Cone $=1 / 3 \times$ Vol of Cylinder

$$
\begin{aligned}
& =1 / 3 \times 360 \\
& =\mathbf{1 2 0} \mathbf{c m}^{3}
\end{aligned}
$$

4. What is the formula to findout the Total surface area of a frustrum of cone?

Ans : $\mathrm{A}=\pi\left(\mathbf{r}_{1}+\mathrm{r}_{2}\right) \boldsymbol{l}+\pi\left(\mathbf{r}_{1}{ }^{2}+\mathbf{r}_{2}{ }^{2}\right)$
5. Find the volume of a Cone whose height is 4 cm and the diameter of its base is 21 cm

$$
\begin{aligned}
& \text { Ans: } \mathrm{h}=4 \mathrm{~cm} \\
& \mathrm{r}=\mathrm{d} / 2=21 / 2 \\
& \mathrm{~V}=1 / 3 \pi \mathrm{r}^{2} \mathrm{~h} \\
& =1 / 3 \times 22 / 7 \times(21 / 2)^{2} \times 4=1 / 3 \times 22 / 7 \times 22 / 7 \times 21 / 2 \times 4=22 \times 21=462 \mathrm{~cm}^{3}
\end{aligned}
$$

6. Find the Curved surface area, Total surface area and Volume of a cylinder of height 7 cm and radius of base 5 cm

Ans :

$$
\begin{gathered}
\mathrm{h}=7 \mathrm{~cm} \quad \mathrm{r}=5 \mathrm{~cm} \\
\mathrm{CSA}=2 \pi \mathrm{rh}=2 \times 22 / 7 \times 5 \times 7=2 \times 22 \times 5=\mathbf{2 2 0} \mathrm{cm}^{2} \\
\mathrm{TSA}=2 \pi \mathrm{r}(\mathrm{r}+\mathrm{h})=2 \times 22 / 7 \times 5(5+7)=2 \times 22 / 7 \times 5 \times 12=2 \times 3.14 \times 60=\mathbf{3 7 6 . 8} \mathrm{cm}^{2} \\
\mathrm{Vol}=\pi \mathrm{r}^{2} \mathrm{~h}=22 / 7 \times 5 \times 5 \times 7=22 \times 25=\mathbf{5 5 0} \mathbf{c m}^{\mathbf{3}}
\end{gathered}
$$

7. Find the CSA and TSA of a Cone whose Slant height is 14 cm and base radius 5 cm .

Ans: $\quad l=14 \mathrm{~cm} \quad \mathrm{r}=5 \mathrm{~cm}$

$$
\begin{aligned}
& \mathrm{CSA}=\pi \mathrm{rl}=22 / 7 \times 5 \times 14=22 \times 5 \times 2=\mathbf{2 2 0} \mathbf{c m}^{2} \\
& \mathrm{TSA}=\pi \mathrm{r}(\mathrm{r}+1)=22 / 7 \times 5(5+14)=22 / 7 \times 5 \times 19=3.14 \times 95=\mathbf{2 9 8 . 3} \mathbf{c m}^{2}
\end{aligned}
$$

8. Find the surface area and Volume of a Sphere of diameter 28 cm

Ans: $\quad d=28 \mathrm{~cm} \quad r=14 \mathrm{~cm}$

$$
\begin{aligned}
\text { Surface area } & =4 \pi r^{2}=4 \times 22 / 7 \times 14 \times 14=4 \times 22 \times 2 \times 14=2464 \mathbf{c m}^{2} \\
\text { Volume } & =4 / 3 \pi r^{3}=4 / 3 \times 22 / 7 \times 14 \times 14 \times 14=1.33 \times 22 \times 2 \times 196=\mathbf{1 1 4 6 9 . 9 2} \mathbf{c m}^{3}
\end{aligned}
$$

9. Find the TSA of a Frustrum of Cone of Slant height 10 cm whose radii are 14 cm and 7 cm .

Ans: $\quad l=10 \mathrm{~cm} \quad \mathrm{r}_{1}=14 \mathrm{~cm} \quad \mathrm{r}_{2}=7 \mathrm{~cm}$

$$
\begin{aligned}
\mathrm{CSA}= & \pi\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right) l=22 / 7(14+7) 10=22 / 7 \times 21 \times 10=22 \times 3 \times 10=\mathbf{6 6 0} \mathbf{c m}^{2} \\
\mathrm{TSA}=\mathrm{A} & =\pi\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right) 1+\pi\left(\mathrm{r}_{1}{ }^{2}+\mathrm{r}_{2}{ }^{2}\right) \\
& =22 / 7(14+7) 10+22 / 7\left(14^{2}+7^{2}\right) \\
& =660+{ }^{22} / 7(196+49) \\
& =660+{ }^{22} / 7(245) \\
& =660+22(35) \\
& =660+77=\mathbf{1 4 3 0} \mathbf{c m}^{2}
\end{aligned}
$$

STATISTICS

1. Find the Mean, Median \& Mode of the following data.

C I	$1-10$	$11-20$	$21-30$	$31-40$	$41-50$	$51-60$	$61-70$
f	2	5	7	5	6	3	2

C I	\mathbf{f}	X	fX
$\mathbf{0 - 1 0}$	$\mathbf{2}$	5	$\mathbf{1 0}$
$\mathbf{1 0 - 2 0}$	$\mathbf{5}$	$\mathbf{1 5}$	$\mathbf{7 5}$
$\mathbf{2 0 - 3 0}$	7	$\mathbf{2 5}$	$\mathbf{1 7 5}$
$\mathbf{3 0 - 4 0}$	$\mathbf{5}$	$\mathbf{3 5}$	$\mathbf{1 7 5}$
$\mathbf{4 0 - 5 0}$	$\mathbf{6}$	$\mathbf{4 5}$	$\mathbf{2 7 0}$
$\mathbf{5 0 - 6 0}$	$\mathbf{3}$	$\mathbf{5 5}$	$\mathbf{1 6 5}$
$\mathbf{6 0 - 7 0}$	$\mathbf{2}$	$\mathbf{6 5}$	$\mathbf{1 3 0}$
$\mathbf{N}=30$		$\mathbf{\Sigma f X}=1000$	

C I	\mathbf{f}	\mathbf{f}_{c}
$\mathbf{0 - 1 0}$	2	2
$10-20$	5	7
$20-30$	7	14
$\mathbf{3 0 - 4 0}$	5	19
$40-50$	6	25
$50-60$	3	28
$60-70$	2	30
$\mathrm{~N}=30$		

$\mathrm{N} / 2={ }^{30} / 2=15$
Median $=1+\frac{\mathrm{N} / 2-\mathbf{f}_{\mathrm{c}}}{\mathbf{f}_{\mathrm{m}}} \times \mathrm{h}$
$=30+\frac{15-14}{5} \times 10$
$=30+1 / 5 \times 10$
$=30+2$
Median $=32$
Mean $=\Sigma \mathrm{fX} / \mathrm{N}=1000 / 30=33.3$

$$
\begin{aligned}
\text { Mode } & =\mathbf{l}+\frac{\mathbf{f}_{\mathbf{1}}-\mathbf{f}_{\mathbf{0}}}{2 \mathbf{f}_{\mathbf{1}}-\mathbf{f}_{\mathbf{2}}-\mathbf{f}_{\mathbf{0}}} \times \mathbf{h} \\
& =20+\frac{7-5}{2.7-5-5} \times 10 \\
& =20+{ }^{2} / 4 \times 10=20+{ }^{20} / 4=20+5=25
\end{aligned}
$$

2. Find the Mean, Median \& Mode of the following data.

C I	$25-35$	$35-45$	$45-55$	$55-65$	$65-75$
f	7	8	16	10	9

C I	\mathbf{f}	X	fX	
$\mathbf{2 5 - 3 5}$	7	$\mathbf{3 0}$	$\mathbf{2 1 0}$	
$\mathbf{3 5 - 4 5}$	$\mathbf{8}$	$\mathbf{4 0}$	$\mathbf{3 2 0}$	
$\mathbf{4 5 - 5 5}$	$\mathbf{1 6}$	$\mathbf{5 0}$	$\mathbf{8 0 0}$	
$\mathbf{5 5 - 6 5}$	$\mathbf{1 0}$	$\mathbf{6 0}$	$\mathbf{6 0 0}$	
$\mathbf{6 5 - 7 5}$	$\mathbf{9}$	$\mathbf{7 0}$	$\mathbf{6 3 0}$	
$\mathrm{~N}=50$		$\mathbf{\Sigma f}=\mathbf{2 5 6 0}$		

Mean $=\Sigma \mathrm{fX} / \mathrm{N}=2560 / 50=51.2$

\mathbf{C} I	\mathbf{f}	$\mathbf{f}_{\mathbf{c}}$
$\mathbf{2 5 - 3 5}$	$\mathbf{7}$	$\mathbf{7}$
$\mathbf{3 5 - 4 5}$	$\mathbf{8}$	$\mathbf{1 5}$
$\mathbf{4 5 - 5 5}$	$\mathbf{1 6}$	$\mathbf{3 1}$
$\mathbf{5 5 - 6 5}$	$\mathbf{1 0}$	$\mathbf{4 1}$
$\mathbf{6 5 - 7 5}$	$\mathbf{9}$	$\mathbf{5 0}$
$\mathbf{N}=\mathbf{5 0}$		

$\mathrm{N} / 2=50 / 2=25$
Median $=1+\frac{\mathrm{N} / 2-\mathbf{f}_{\mathbf{c}}}{\mathbf{f}_{\mathrm{m}}} \times \mathrm{h}$
$=45+\frac{25-15}{16} \times 10$
$=45+{ }^{10} /{ }_{16} \times 10$
$=45+{ }^{100} / 16$
Median $=45+6.25=51.25$

For Practice : Find the Mean, Median \& Mode of the following data.

C I	$1-5$	$6-10$	$11-15$	$16-20$	$21-25$
f	3	5	4	2	6

C I	16-20	$21-25$	$26-30$	$31-35$	$36-40$
f	5	6	8	4	7

C I	$100-120$	$120-140$	$140-160$	$160-180$	$180-200$
\mathbf{f}	8	9	7	5	6

Drawing an O-give Curve
3. Draw a less than type \mathbf{O}-give for the following data.

C I	f	Less than fc
$0-10$	2	2
$10-20$	5	7
$20-30$	7	14
$30-40$	5	19
$40-50$	6	25
$50-60$	3	28
$60-70$	2	30

4. Draw a More than type O-give for the following data

C I	f	More than fc
$\mathbf{0 - 1 0}$	2	30
$10-20$	5	28
$20-30$	7	23
$30-40$	5	16
$40-50$	6	11
$50-60$	3	5
$60-70$	2	2

5. Draw Less than type \mathbf{O}-give for the following data.

C I	fc
$<\mathbf{1 0}$	5
<20	11
<30	19
<40	$\mathbf{3 0}$
<50	42
<60	48
<70	55

6. Draw a More than type \mathbf{O}-give for the following data.

C I	fc
>10	50
>20	40
>30	35
>40	26
>50	20
>60	13
>70	8

7. If the mean of $4, x, 6,9$ is 6 , find the value of x.

$$
\begin{aligned}
& \text { Mean }=\frac{\text { Sum of all terms }}{\text { Number of terms }}=\frac{4+\mathrm{x}+6+9}{4} \\
& 6=\frac{19+\mathrm{x}}{4} \longrightarrow 24=19+\mathrm{x} \longrightarrow \mathrm{x}=24-19 \longrightarrow \mathrm{x}=6
\end{aligned}
$$

8. Write the Modal Class in the following data. 9. Write the Median in 2, 5, 9, 7, 4, 11, 1

C I	\mathbf{f}
$\mathbf{0 - 1 0}$	2
$10-20$	5
$20-30$	7
$30-40$	5
$40-50$	6
$50-60$	3
$60-70$	2

as 7 is the highest frequency in the data,
$20-30$ is the modal class

?

Arithmetic Progression

1. General form of A.P is

$$
a, a+d, a+2 d, a+3 d \ldots
$$

2. $\mathrm{n}^{\text {th }}$ term of an A.P is

$$
a_{n}=a+(n-1) d
$$

3. $\mathrm{n}^{\text {th }}$ term from last of an A.P is

$$
\mathrm{l}-(\mathrm{n}-1) \mathrm{d}
$$

4. Common difference of an A.P is

$$
d=a_{2}-a_{1} \text { (or) } d=a_{3}-a_{2}
$$

5. The sum of first ' n ' positive integer

$$
S_{n}=\frac{n(n+1)}{2}
$$

6. The sum of ' n ' odd natural numbers

$$
\mathrm{S}_{\mathrm{n}}=\mathrm{n}^{2}
$$

7. The sum of ' n ' even natural numbers

$$
\mathrm{S}_{\mathrm{n}}=\mathrm{n}(\mathrm{n}+1)
$$

8. Sum of first ' n ' terms of an A.P is

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

9. Sum of AP, if first and last terms are given

$$
S_{n}=\frac{n}{2}\left[a+a_{n}\right] \quad \text { (or) } \quad S_{n}=\frac{n}{2}[a+l]
$$

10. In any progression

$$
S_{n}-S_{n-1}=a_{n}
$$

1. Find $10^{\text {th }}$ term of the sequence $a_{n}=2 n-5$

Soln: $\mathrm{a}_{\mathrm{n}}=2 \mathrm{n}-5$

$$
\begin{aligned}
a_{10} & =2(10)-5 \\
a_{10} & =20-5 \\
\therefore a_{10} & =15
\end{aligned}
$$

Drill work

1. If the $n^{\text {th }}$ term of an AP $a_{n}=3 n-2$. Find the $9^{\text {th }}$ term.
2. If the $n^{\text {th }}$ term of an AP $a_{n}=24-3 n$. Find the $2^{\text {th }}$ term.
3. If the $n^{\text {th }}$ term of an AP $a_{n}=5 n+3$. Find the $3^{\text {th }}$ term.
4. Find the $10^{\text {th }}$ term of AP $2,7,12, \ldots$. using formula.

$$
\begin{aligned}
& \text { Soln: } \begin{aligned}
a=2, d & =5, n=10 \\
\text { w.k.t } a_{n} & =a+(n-1) d \\
a_{10} & =2+(10-1) 5 \\
a_{10} & =2+9 \times 5 \\
a_{10} & =2+45 \\
\therefore a_{10} & =47
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { Alternate Method } \\
a_{10}=\mathrm{a}+9 \mathrm{~d} \\
\mathrm{a}_{10}=2+9 \times 5 \\
\mathrm{a}_{10}=2+45 \\
\therefore \mathbf{a}_{10}=47
\end{array} \\
& \text { Drill work }
\end{aligned}
$$

1. In an AP $21,18,15, \ldots \ldots \ldots .$. find $35^{\text {th }}$ term.
2. In an AP $3,8,13, \ldots \ldots \ldots .$. find $12^{\text {th }}$ term.
3. In an AP $10,7,4, \ldots \ldots \ldots .$. find $18^{\text {th }}$ term.
4.
5. Find the sum of $2+5+8+\ldots \ldots .$. to 20 terms

Soln: $\mathrm{a}=2, \mathrm{~d}=3, \mathrm{n}=20$ and $\mathrm{S}_{\mathrm{n}}=$?

$$
\begin{aligned}
& \text { w.k.t } S_{n}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\
& \mathrm{S}_{20}=\frac{20}{2}[2 \times 2+(20-1) \times 3] \\
& \mathrm{S}_{20}=10[4+19 \times 3] \\
& \mathrm{S}_{20}=10[4+57] \\
& \mathrm{S}_{20}=10 \times 61 \\
& \therefore \mathrm{~S}_{20}=\mathbf{6 1 0}
\end{aligned}
$$

Drill work

1. Find the sum of first 20 terms of an AP 3, 7, 11, 15, $\ldots \ldots$
2. Find the sum of first 25 terms of an AP $5,10,15,20, \ldots \ldots$.
3. Find the sum of first 18 terms of an AP $2,7,12, \ldots \ldots$.
4. Find the sum of: $1+5+9+\ldots \ldots .$. up to 25 terms.
5. Find the sum terms of an AP $2,7,12, \ldots \ldots$.
